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Objective: The adrenal excretion of cortisol in animals is dependent on the production of corticotropin-releasing factor in the
paraventricular nucleus of the hypothalamus. The a priori hypothesis of this study was that hypothalamic regional cerebral blood
flow (rCBF) would correlate positively with salivary cortisol levels in patients with social anxiety disorder (SAD) during anxiety
provocation. Another objective was to evaluate whether salivary cortisol levels correlated with rCBF in other brain areas. Method:
Regional CBF was measured with oxygen-15-labeled water and positron emission tomography during a public speaking task before
and after placebo treatment in 12 subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition-defined SAD.
Cortisol concentrations in saliva were measured 15 minutes after the task. The a priori hypothesis of a salivary cortisol-dependent
activation of the hypothalamus was studied with region-of-interest analysis. In addition, the covariation between rCBF and salivary
cortisol was studied in the whole brain using the general linear model. Results: The region-of-interest analysis revealed a positive
correlation between salivary cortisol and hypothalamic rCBF. In the whole brain analysis, a positive covariation between rCBF and
salivary cortisol levels was found in a midbrain cluster encompassing the hypothalamus with its statistical maximum in the
mamillary bodies. Negative covariations were observed in the medial prefrontal cortex as well as in the motor and premotor
cortices. Conclusion: Like in animals, stress-induced cortisol excretion in humans may be inhibited by activity in the medial
prefrontal cortex and enhanced by activity in the hypothalamus. Key words: rCBF, PET, cortisol, symptom provocation,
hypothalamus, medial prefrontal cortex.

ACC � anterior cingulate cortex; ACTH � adrenocorticotropic
hormone; BA � Brodmann area; CRF � corticotropin-releasing
factor; fMRI � functional magnetic resonance imaging; MNI �
Montreal Neurological Institute; MTL � medial temporal lobe;
PET � positron emission tomography; PTSD � posttraumatic stress
disorder; PVN � paraventricular nucleus of the hypothalamus;
rCBF � regional cerebral blood flow; ROI � region of interest;
SAD � social anxiety disorder.

INTRODUCTION

Cortisol is extensively used as a marker of stress (1) and
negative affect (2) often in studies of psychiatric disorders

like depression (3), posttraumatic stress disorder (PTSD) (4),
and social anxiety disorder (SAD) (5). However, brain mech-
anisms underlying cortisol excretion are incompletely under-
stood, particularly in humans.

Animal studies support that activity in the paraventricular
nucleus of the hypothalamus (PVN) induces release of the
corticotropin-releasing factor (CRF) to the pituitary gland in
turn regulating the adrenocorticotropic hormone (ACTH) (6).
The release of ACTH is under inhibitory control from the
hippocampus (7) and regions in the medial prefrontal cortex
(8,9), areas with dense distributions of glucocorticoid and
mineralocorticoid receptors (10,11). Only a few brain imaging
studies have related measures of central neural activity to
cortisol excretion in humans, all during resting state condi-
tions. In patients with schizophrenia, studied before and after

neuroleptic treatment, differences in glucose metabolism in a
hypothalamic region of interest (ROI) after treatment were
negatively correlated to differences in plasma cortisol (12). In
depressed patients, plasma cortisol levels were positively cor-
related with glucose metabolism in the left amygdala (13). In
traumatized volunteers with and without PTSD, a negative
correlation between resting plasma cortisol levels and mea-
sures of regional cerebral blood flow (rCBF) was observed in
the anterior cingulate cortex (ACC) (14). Negative correla-
tions between rCBF and cortisol were obtained in the medial
temporal lobe in patients with combat related PTSD (14). In
healthy volunteers, Neylan et al. (15) reported a positive
correlation between hippocampal N-acetylaspartate activity, a
marker of neuronal integrity and synaptic abundance, and
salivary cortisol levels. However, to the best of our knowl-
edge, no study in humans has related stress-induced cortisol to
the corresponding brain activation patterns indexed by rCBF.

Hence, the present study aimed at correlating measures of
cortisol excretion during stress to rCBF. Stress was induced
through a public speaking task in 12 patients with SAD.
Subjects participated in a larger study on the effects of drug
treatment on brain activity (16). We relate salivary cortisol
levels to rCBF measured during public speaking before and
after a double-blind 6-week placebo treatment period. Based
on animal research (6), we predicted a positive linear relation-
ship between hypothalamic rCBF and cortisol levels, but with
no specific hypothesis regarding other brain areas.

METHODS
The positron emission tomography (PET) protocol and design have been

described in detail elsewhere (16). Briefly, 12 adults (seven women, mean
age � 32.4 years, standard deviation [SD] � 6.5), who met the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for
SAD as defined by the Structured Clinical Interview for DSM-IV (SCID)
were included. The study was approved by the local ethics and radiation
safety committees and subjects signed informed consent. Subjects participated
in the study during the spring and fall of 2002.

Regional CBF was measured using a Siemens Ecat� PET scanner with an
axial field of view of 155 mm operated in the three-dimensional mode. PET
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data were collected in three frames of 30 seconds and corrected for attenuation
and scatter. Subjects were positioned in the PET scanner and asked to prepare
a short speech about a travel experience. After 15O-water tracer injection,
subjects spoke for 180 seconds in the presence of a silently observing
audience of six to eight persons while being video recorded. The PET scanner
started automatically at 50,000 counts/second when the tracer bolus reached
the brain. A second PET scan using the same procedure was made after 6
weeks of placebo treatment consisting of a daily, orally administered pill
taken together with 100 mL of orange juice. Subjects completed the Spiel-
berger’s state anxiety inventory, STAI-S (range � 20–80) (17) 2 hours before
(baseline) and right after the two speeches to determine anxiety evoked by the
speaking task.

Salivary cortisol samples were collected 2 hours before (baseline) and 15
minutes after both speeches using Salivette devices (Sarstedt, Nümbrecht,
Germany) and stored at �20°C until biochemical analysis. Saliva was thawed
and spun at 3000 rpm for 10 minutes and cortisol concentrations were
determined by a time-resolved immunoassay with fluorometric detection as
described elsewhere (18). The time of day for the two assessments varied
between individuals but were as far as possible tried to be held constant within
subjects (mean absolute difference � 50 minutes, standard error � 13).

Whole brain statistical analyses were performed using the SPM99 soft-
ware (Wellcome Department of Cognitive Neurology, London, U.K.). Images
were realigned, normalized, and smoothed using a 12-mm Gaussian kernel.
Statistical parametric maps using the general linear model (19) were com-
puted with cortisol measures after speech from both PET assessments as a
covariate of interest and sex as a nuisance variable. Sex was used as a
nuisance variable because a previous study reported larger salivary cortisol
concentrations for men than for women in response to a public speaking task
(20). Subject specific regressors were used to model the within subject error
variance (19). Cortisol measures after speech were analyzed because they
reflect the cortisol excretion during the speech in the PET scanner. The
resulting t-maps were thresholded at a t-value of 1.96 in accordance with a
previous correlative study on autonomic nervous activity and rCBF (21).
Locations of activation patterns are expressed as x, y, z coordinates in
Talairach (22) space. Anatomic labeling was done according to the detailed
brain atlas of Mai (23).

To test the a priori hypothesis of a positive correlation between rCBF in
the hypothalamus and salivary cortisol, mean rCBF values from the hypo-
thalamus were extracted using MarsBaR (http://marsbar.sourceforge.net)
from a ROI defined in Montreal Neurological Institute (MNI) space in WFU
PickAtlas (24). Because the measurements from the two assessments pre- and
postplacebo treatment could not be considered statistically independent, hy-
pothalamic rCBF values and cortisol values after speech were collapsed over
the two speeches to form mean values. The mean values were then used to
compute the Pearson product moment correlation coefficient in SPSS (version
12; SPSS, Inc., Chicago, IL). Also, the mean values of the time of day for the
two cortisol assessments after speech were correlated to the mean cortisol
levels to control for the possible confound imposed by diurnal fluctuations of
cortisol excretion.

RESULTS
State anxiety ratings increased from baseline to speech both

before (mean � SD, baseline 40.50 � 10.54, speech 59.75 �
10.38; t(11) � 5.56; p � .0002) and after placebo treatment
(mean � SD, baseline 41.83 � 11.56, speech 55.50 � 10.89;
t(11) � 3.47; p � .005). Ratings were not different over time
(baseline t(11) � 0.43; p � .67; speech t(11) � 1.53; p � .15).
Cortisol levels did not increase significantly from baseline to
speech neither before (mean � SD, baseline 12.40 � 7.20,
speech 14.70 � 11.44; t(11) � 0.80; p � .44) nor after
placebo treatment (mean � SD, baseline 8.02 � 4.08, speech
11.42 � 8.60; t(11) � 1.45; p � .18). Cortisol levels were
lower during baseline (t(11) � 3.07; p � .01) and tended to be
lower after speech (t(11) � 2.07; p � .06) after placebo

treatment. Regional CBF changed with placebo treatment in
the cerebellum only (16).

Positive Covariation Between Regional Cerebral
Blood Flow and Cortisol

Computation of the product moment correlation coefficient
between rCBF in the hypothalamus and salivary cortisol sup-
ported the a priori hypothesis of a positive relationship (r �
0.68; p � .014, Fig. 1). Because two of the 12 subjects showed
exceedingly high cortisol levels (�1.9 standard deviations
above the mean), the correlation coefficient was recomputed
using log-transformed data. The correlation remained (r �
0.60, p � .039), showing that it could not be explained by the
possible nonnormal distribution of the data. Another concern
was that the cortisol levels could reflect diurnal fluctuations
rather than stress that was induced from the speaking task.
However, there was no correlation between time of the day
and cortisol levels (r � �0.227, p � .478). Also, the two
subjects with the highest cortisol levels were not tested at an
earlier time of the day than the rest of the subjects.

In the exploratory SPM99 analysis, measures of rCBF and
salivary cortisol levels covaried positively in a midbrain clus-
ter of 2624 voxels with its statistical maximum in the mamil-
lary bodies (Talairach coordinates 0, �12, �13; z � 3.97; p �
.019 corrected), a part of the hypothalamus. The cluster ex-
tended ventrally into the brain stem/pons (Fig. 2A).

Negative Covariation Between Regional Cerebral
Blood Flow and Cortisol

Cortisol and rCBF covaried negatively in a cluster encom-
passing the medial prefrontal cortex and another located in the
premotor/motor cortices with the maxima in Brodmann areas
(BA) 32 (Talairach coordinates 4, 38, 18; z � 3.56; p � .021
corrected) and 6 (Talairach coordinates 4, �28, 70; z � 4.99;

Figure 1. A scatter plot of mean salivary cortisol levels from after the two
speeches and mean hypothalamic regional cerebral blood flow (rCBF) during
the two speeches showing a positive correlation (r � 0.68, p � .014)
consistent with an excitatory influence of hypothalamic activity on cortisol
excretion.
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p � .00025 corrected), respectively. The medial prefrontal
cluster extended into BA 9 and 10, and the premotor/motor
cluster encompassed BA 4 and 6 bilaterally (Fig. 2B).

DISCUSSION
We observed a positive covariation between rCBF in the

hypothalamus and salivary cortisol excretion in patients with
SAD during a stressful public speaking task. Negative co-
variations were observed in the medial prefrontal cortex and
motor/premotor areas. The positive covariation is consistent
with reports in animals in which hypothalamic activity origi-
nating in the PVN enhances the release of CRF.

Similar to Bonne et al. (14), we observed a negative co-
variation between cortisol levels and neural activity in the
medial prefrontal cortex with the focus in the ACC. Increased
ACTH levels have also been related to reduced volumes of the
ACC in humans (25). In animals, lesions to the ACC result in
increased cortisol in response to restraint stress (8) and an
increased expression of cFOS in the PVN (9), suggesting
an inhibitory influence. However, a recent perfusion func-
tional MRI (fMRI) study implicated a possible excitatory role
for the anteromedial prefrontal cortex in the control of cortisol
during mild to moderate cognitive stress (26).

Cortisol levels covaried negatively with activity in the
premotor and motor areas (BA 4 and 6). Elevated cortisol
levels have previously been associated with behavioral inhi-
bition (27). Systemic injections of cortisol have also shown
dampening effects on locomotion in rats (28). It is unlikely
that activity in the motor cortex should have an inhibitory
influence on cortisol excretion. Rather, we speculate that the
reduction of neural activity in the presence of higher cortisol
levels could be mediated by the release of CRF from afferent
nerve terminals, because CRFs seem to have a depressant-like
action on neural activity in the sensorimotor cortex (29).

This study has several limitations. First, the low spatial
resolution of PET precludes precise localization of specific
hypothalamic subnuclei such as the PVN. In addition, because
measurements of other hormones, for example vasopressin,
were lacking in this study, it could not be excluded that these
hormones did not correlate with hypothalamic activity as well.
Therefore, we cannot study the segregation of the covariation

between cortisol and rCBF on one hand and other hormones
linked to cortisol on the other hand. Last, no baseline PET
scans were acquired that prevented an analysis of changes in
cortisol levels and changes in rCBF between a resting and a
stress state.

Although previous reports on brain activity and cortisol
excretion exist (12–15), general conclusions may not be fea-
sible because designs and data processing differ. Bonne et al.
(14) studied plasma cortisol excretion and rCBF in the resting
state in newly traumatized individuals. Consistent with animal
data, suggesting hippocampal inhibition of cortisol excretion
(6), they reported a negative correlation between rCBF in the
medial temporal lobe (MTL) and cortisol in patients with
PTSD. We did not observe such a negative correlation. Be-
cause our study was performed during symptom provocation,
the relation between rCBF in the MTL and cortisol may be
altered. Also, we did not observe any relation between amyg-
dala activity and cortisol excretion, whereas Drevets and co-
workers (13) reported a positive association in patients with
major depressive disorder.

Most reports on the relation between brain activity and
cortisol excretion may not reflect general regulatory processes
but mechanisms specific for disorders like SAD, schizophre-
nia (12), depression (13), or traumatized individuals (14).
Hence, a study in normal healthy individuals performing a
stressful task is warranted to explore brain mechanisms gen-
erally involved in cortisol control. At present, consistent with
previous animal literature, data tentatively suggest that activ-
ity in the medial prefrontal and frontal cortex, as well as the
hypothalamus, relate to the control of cortisol excretion in
humans.
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