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In response to stress, the hypothalamus–pituitary–adrenal axis is activated and 
glucocorticoids are secreted. These hormones exert multiple effects in the periphery as 
well as the brain. Acutely, they enhance memory consolidation, but at the same time the 
ability to retrieve previously learned information is reduced. In addition, glucocorticoids 
appear to interfere with working (short-term) memory. Chronically elevated glucocorticoid 
levels, as a result of endocrine or psychiatric disorders or as part of age-associated 
changes in the hypothalamus–pituitary–adrenal system, mostly have a negative influence 
on memory. In parallel, structural alterations are observed in the hippocampus and the 
prefrontal cortex. However, it seems that plasticity/reversibility is more common than 
previously thought. Moreover, several pharmacological interventions in animal models or 
small-scale human studies have revealed promising results. The advanced understanding 
of the CNS effects of glucocorticoids will ultimately lead to progress in the treatment of 
psychiatric and systemic diseases characterized by hypothalamus–pituitary–adrenal 
hyper- or hypo-activity. 
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Interaction with a stressor leads to a cascade of
neuroendocrine stress responses, designed to
facilitate adaptation [1]. The hypothala-
mus–pituitary–adrenal (HPA) axis, together
with the sympathetic nervous system (SNS), is
one of the most important systems in this
respect. The hypothalamus activates the HPA
axis in response to input from several other
brain regions (e.g., the amygdala and the pre-
frontal cortex [PFC]). Corticotropin-releasing
hormone and vasopressin are released in the
portal blood system. They reach the pituitary,
which in turn releases adrenocorticotrophin
(ACTH). In response to ACTH, the adrenal
cortex secretes glucocorticoids (GCs), but also
other steroid hormones
(e.g., dehydroepiandrosterone). In most labora-
tory rodents, corticosterone is the most impor-
tant GC, whereas in humans, cortisol is the
main adrenal GC. GCs, as lipophilic steroid
hormones, can enter the brain, even though
access might be restricted by the multidrug-
resistant P-glycoprotein [2]. In the brain, GCs
exert effects on multiple structures involved in

cognition, such as the limbic regions
(e.g., amygdala and hippocampus), but also pre-
frontal regions (e.g., anterior cingulate). These
effects are often caused by the binding to the
two receptors for the hormone; the mineralo-
corticoid receptor (MR) and the glucocorticoid
receptor (GR). These two receptors differ in
their affinity for cortisol (with the MR having a
much higher affinity) but also in their localiza-
tion in the brain. In addition, GCs can exert
rapid nongenomic effects by modulating ion
channels or neurotransmitter receptors at the
cell membrane level [1]. The strength of GC
effects on specific brain target structures is
determined by multiple factors, in addition to
the GC concentration in the blood. Among
these are receptor number and sensitivity, but
also activity of intracellular enzymes involved in
GC metabolism such as 11β-hydroxysteroid
dehydrogenase type 1 (11β-HSD1) [3]. 

The other hormones of the HPA axis (corti-
cotropin-releasing hormone, vasopressin and
ACTH) can influence the brain independently
of their effects on GC secretion [4]. 
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Overview
The goal of this review is the description of acute, as well as
chronic, effects of GCs on the human brain, with a special
emphasis on memory and the medial temporal lobe memory
system. Since a substantial proportion of knowledge about the
CNS effects of these hormones has been derived from studies
in animals, findings obtained in rodents will be described first.
Acute stress effects will be described, followed by chronic
effects. The concept of multiple memory systems in the brain
will be an additional way that the presentation of the findings
is structured. 

There is agreement that there is not a single memory system
in the brain, but multiple interacting systems [5–7]. This review
will focus on declarative, or explicit, long-term memory, since it
has been investigated most intensely with respect to stress
effects. The episodic (in contrast to the semantic) aspect of
declarative memory refers to the explicit and voluntary storage
of facts and events, which can later be intentionally
retrieved [5–7]. It is a relational and flexible system. This type of
memory is tested in humans most often with word lists, short
stories or slides. In animals, spatial maze tasks are frequently
used. 

Long-term memory can be further divided into different
memory phases, namely acquisition (or initial learning), con-
solidation (or storage) and retrieval (or recall). For the success-
ful completion of episodic declarative tasks, an intact medial
temporal lobe region (hippocampus and surrounding cortical
structures) is essential for the acquisition of the task. The role
of the hippocampus for retrieval is debated and it might fulfil a
time-limited role only and/or might be crucial for successful
retrieval, but not for search efforts associated with retrieval [5,6].
Especially in humans, it is the PFC that is also of importance
for (effortful) retrieval. 

After the discussion of long-term memory, findings for work-
ing (short-term) memory, which is mediated by structures in
the PFC, will briefly be mentioned. Nondeclarative, or proce-
dural, forms of learning (e.g., classical conditioning, skill learn-
ing or priming) will not be addressed in this review. These
memory forms do not rely predominantly on the medial tem-
poral lobe (except for trace conditioning) and stress effects on
these memory forms have not been studied well in humans [8].

Stress, memory & the brain: data from animals
Spatial long-term memory: acute effects
The literature regarding the effects of stress on long-term mem-
ory has been quite diverse and confusing, with groups reporting
enhancing, as well as impairing, effects of GCs on this form of
memory. However, thanks to progress made in recent years, it
has become apparent that this is largely due to the fact that the
different memory phases are modulated by GCs in opposite
directions [9]. 

GCs enhance memory consolidation and this aspect repre-
sents the adaptive and beneficial mode of GCs’ CNS action.
This process has been conceptualized as the beneficial effects of
‘stress within the learning context’ [10]. Thus, a stressful learning

episode is remembered better than a less stressful event [11].
This effect is mediated by the action of stress-released GCs on
the hippocampal formation [10]. Studies with mutant mice have
demonstrated that DNA binding of the hippocampal GR is
crucial in this respect [12]. Roozendaal and McGaugh have
shown in their work that adrenergic activation in the baso-
lateral amygdala (BLA) appears to be a prerequisite for the
modulating effects of GCs in other brain regions
(e.g., hippocampus). Lesions of the BLA, as well as local or sys-
temic injections of β-receptor antagonists, prevent the
enhancing effects of post-training GC administration [9]. 

In contrast to the positive effects on memory consolidation,
effects of GCs on memory retrieval are negative. By using a
24-h delay interval, de Quervain and colleagues demonstrated
in 1998 that foot-shock stress 30 min before retrieval testing
impairs the memory retrieval in rats in the water maze [13]. This
impairment was prevented by treating the animals with the cor-
ticosterone synthesis inhibitor, metyrapone. Similar deficits
occurred after systemic corticosterone administration or intra-
hippocampal infusion of a GR agonist [13]. The latter finding
indicates that GR activation in this brain region is crucial for
the induction of this effect [14]. Further studies have revealed
that, again, an intact BLA, as well as adrenergic activation,
appear to be necessary for the impairing effect of GCs on mem-
ory retrieval [15]. Local as well as systemic injection of a β-recep-
tor antagonist abolished the impairing effect on GC treatment
on memory retrieval. Roozendaal has summarized his findings
as indicative that stress puts the brain into a consolidation
mode, which is accompanied by impaired retrieval. Such a
retrieval reduction might facilitate consolidation by reducing
interference [9]. 

Spatial long-term memory: chronic effects
For more chronic effects, as a result of prolonged stress or GC
treatment, the picture is different. Here, negative effects appear
to prevail. Chronic stress in animals has repeatedly been shown
to result in impaired spatial memory [16,17]. Again, the hippo-
campus seems to be an important mediator. Stress-induced
dendritic atrophy (or dendritic remodeling) in the hippocam-
pus is one possible mechanism [18]. In contrast, stress- [19,20] or
GC- treatment- [21] induced neuronal death appears to occur
rarely or only under extreme conditions. However, additional
or alternative mediators have to be kept in mind. Among those
are reduced neurogenesis in the dentate gyrus and dysregulation
of several catecholamine systems. Recent studies demonstrate
substantial plasticity in the adult rodent brain. For example,
stress-induced dendritic atrophy appears to be reversible [18].
Moreover, and very interesting from a clinical perspective, con-
current treatment of chronically stressed rats, as well as tree
shrews, with antidepressants (e.g., tianeptin) or anticonvulsants
(e.g., phenytoin) prevented the negative effects of chronic stress
on the hippocampus [16,22,23].

Increases in HPA activity also occur in laboratory animals as
a result of aging. Some studies have provided evidence that this
enhanced HPA activity is associated with poorer spatial
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memory. Elderly animals displaying memory deficits were char-
acterized by enhanced HPA activity. In contrast, older animals
showing no evidence for memory impairments displayed nor-
mal HPA activity [24]. Most interestingly, behavioral (handling)
or pharmacological (adrenalectomy with GC replacement)
interventions, leading to stable HPA activity throughout the
animal’s life, prevented age-associated cognitive decline [25,26].
Recently, the importance of local tissue GC concentrations has
been illustrated by studies in 11β-HSD1 knockout mice. This
enzyme converts inert GC forms into active corticosterone.
While aged wild-type mice displayed HPA hyperactivity and
cognitive decline, the knockout mice did not show memory
impairments and had lower intrahippocampal corticosterone
levels [27]. All these studies suggest that GC action in the hippo-
campus can in fact play a causal role in the occurrence of age-
associated memory impairments.

Working (short-term) memory: acute & chronic effects
Working memory refers to the ability to shortly store and
manipulate material. This concept has replaced the older
notion of short-term memory and emphasizes the active
processing capacity of this system. Neuroanatomically, this
function has been linked to the PFC [5]. There are a substantial
number of GRs in the PFC [28]. In contrast to the effects of
GCs on the hippocampus, the effects on the PFC are, however,
still less well characterized. 

Roozendaal and colleagues also observed that GC treatment
impaired short-term memory, as tested using a T-maze. Again,
for this effect adrenergic arousal and an intact BLA appear to be
prerequisites [9]. Similar impairing effects have been reported by
other groups [29]. With respect to more chronic stress, structural
alterations (e.g., dendritic atrophy) have been reported, which
were reversible after discontinuation of the stress [30]. Reports of
impairing effects of acute stress [31] or chronic GC
treatment [32] have also been provided by studies with monkeys.
For the acute fast-effects of stress on working memory, the
dopaminergic system appears to play a key role  [31].

Stress & the brain: sex differences in animal studies
Few authors have investigated possible sex differences in the
effects of stress on the brain. However, in those still rare studies,
quite substantial differences between the two sexes have been
reported. Interestingly, the acute impairing effects of stress on
spatial memory might only occur in males [29]. In parallel, sub-
stantial sex differences are observed at the morphological level.
For example, stress suppresses neurogenesis in the hippocampus
of male rats, while no such reduction occurs in females [33]. In
addition, the negative effect of chronic stress on spatial memory
might only occur in male rats [34]. Similarly, chronic stress-
induced dendritic atrophy in the hippocampus is also restricted
to male animals [35].

Strong sex differences have also been reported after acute
stress for classical eyelid conditioning. However, the relation-
ship here is opposite to that for spatial memory. Stressed female
rats show impaired conditioning, while stressed males showed

an enhancement. This was the case for delay as well as trace
conditioning, with the latter depending on the
hippocampus [8]. In the studies by Shors and colleagues, the
stress-induced corticosterone increase was associated with
changes in conditioning in male rats, but not in females [36].
This might suggest that the effects of stress on cognition in
females are, at least in part, mediated by other neuroendocrine
messengers (e.g., gonadal steroids or peptide hormones such as
oxytocin). In summary, animal studies clearly indicate that sex
differences exist when it comes to the effects of stress on the
brain. These differences are task- and time-specific, so that glo-
bal conclusions about one sex being more vulnerable than the
other sex appear inappropriate. 

Stress, memory & the brain: data from humans 
Declarative long-term memory: acute effects
In humans, several placebo-controlled, double-blind studies
have investigated the acute effects of GCs on declarative mem-
ory. Findings have been somewhat inconsistent, but this can be
partly explained by the methods used and research designs. The
author’s group has recently conducted a meta-analysis in order
to obtain a quantitative summary of the current state of the
field. The results supported the model derived from animal
studies (see previously [9]) showing that cortisol impaired mem-
ory retrieval [37]. This appears to be a robust effect, which has
been replicated by several groups [38–41]. Similar observations
have been made in humans (male subjects only in this study),
who were exposed to a psychosocial laboratory stressor shortly
before retrieval testing took place [42]. 

Recent work from the author’s group has aimed to further
characterize the impairing effect of cortisol on memory
retrieval. It has been demonstrated that this effect is more pro-
nounced for the retrieval of emotionally arousing material,
independent of its valence (positive or negative) [42,43]. More-
over, in line with the animal findings that adrenergic activation
is a prerequisite for the effects of cortisol, it was observed that
subjects tested under a relaxed, nonarousing test situation were
not influenced by cortisol [44]. This observation is supported by
other recent studies suggesting that stress-induced cortisol ele-
vations are also only associated with changes in memory when
the subjects are still in the stress situation [45] or when they are
emotionally aroused [46].

Beneficial effects on consolidation could not be clearly estab-
lished using meta-analysis as of today, which in part might have
reflected a power problem [37]. Some studies using emotionally
arousing learning material and a long retention delay, assuring
that GCs can influence consolidation and are back to baseline
at the retrieval testing, observed enhanced memory consolida-
tion. This beneficial effect was observed after oral cortisol pre-
treatment [47] or when subjects were stressed immediately after
presentation of emotional and neutral slides [48]. In our own
work, we observed that oral cortisol shortly before the presenta-
tion of arousing and neutral slides led to enhanced emotional
memory facilitation. This occurred due to an impaired consoli-
dation of neutral material paralleled by enhanced consolidation
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of arousing material [49]. However, it should be acknowledged
that some studies failed to find beneficial effects of cortisol on
emotional memory consolidation [50,51], thus additional
research is warranted.

Interestingly, the beneficial effects on consolidation, as well
as the impairing effects on retrieval in humans, are more pro-
nounced for emotionally arousing material (see above). This
observation fits nicely with the mentioned animal observation
that GCs can only exert effects on memory in the presence of
adrenergic activity in the amygdala. This arousal can be the
result of specifics of the learning material and/or specifics of the
testing conditions [9]. 

In the above-mentioned meta-analysis, time of day appeared
as a second modulatory factor. Studies that administered corti-
sol before initial acquisition observed impairing effects on
memory when they were conducted in the morning, a time of
high endogenous cortisol levels in humans. In contrast, studies
in the evening were more likely to observe beneficial effects [37].
This supports the idea of an inverted U-shaped function
between cortisol levels and memory in humans with too low as
well as too high, levels at the time of acquisition being associ-
ated with impairments, especially when retrieval is tested at
times when cortisol levels are still elevated [28,37]. 

In summary, studies in animals and humans converge on
the idea that GCs acutely enhance memory consolidation of
emotionally arousing material while impairing memory
retrieval. In addition, within this framework, emotional
arousal and a nonlinear dose–response relationship are impor-
tant modulatory variables. 

Cortisol also influences declarative memory consolidation
during sleep. Here, the relationships appear to be different to
those during daytime. Low cortisol levels during the first half of
the night leading to a low GR occupancy appear to be a pre-
requisite for a sleep-induced enhancement of declarative mem-
ory consolidation [52]. Moreover, blocking the rise in cortisol
levels, which typically occurs during the second part of the
night, leads to enhanced emotional memory facilitation [53]. 

Declarative long-term memory: chronic effects
Experimental studies

In human experiments, studying the effects of chronic
(weeks–months) long-term GC treatment is not possible due to
ethical considerations. However, there are some studies that
administered GCs (dexamethasone, prednisone or cortisol) for
several (3–10) days. These studies observed specific declarative
memory impairments or broader effects covering other
cognitive domains such as working memory [54–56]. 

Glucocorticoid therapy

One population of special interest in this context is patients
receiving GC therapy for medical reasons (e.g., asthma or rheu-
matic disease). Surprisingly enough, there are few studies on
this topic. Nevertheless, several reports exist pinpointing cogni-
tive deficits in this population, especially in the area of memory.
Of course, these findings have to be interpreted with caution,

since they are confounded with the underlying disease. In addi-
tion, in general the study design did not allow the differentia-
tion between acute GC effects as a result of the last medication
intake and chronic GC effects. It is currently unclear whether
the negative effects on memory are reversible [57–60]. One recent
study reported reduced hippocampal volumes in patients
receiving GC therapy when compared with patients with mini-
mal GC lifetime exposure [61]. However, a postmortem study
observed no evidence for neuronal loss in a small sample of
patients receiving GC therapy [62]. Clearly, this important area
calls for additional research efforts. Longitudinal studies, care-
fully matching different treatment groups to disease type and
severity, appear to be especially needed. 

Cushing’s disease

Cushing’s disease patients are another interesting population for
the investigation of the effects of chronically and substantially
elevated endogenous cortisol levels on memory and the hippo-
campus. Pioneering work by Starkman and colleagues has docu-
mented that these patients have memory impairments [63] and
hippocampal volume reductions [64]. The latter was inversely
correlated with the cortisol levels of the patients. Recent work
from this group and another group suggests that hippocampal
atrophy is reversible once successful treatment has occurred
[65,66]. This would be in line with the remaining plasticity of this
structure observed in animal studies (see above). 

Depression

A substantial portion of patients with depression show signs of
HPA hyperactivity, which disappears after successful treatment.
It has been postulated that this is either due to a central cortico-
tropin-releasing factor hyperactivity and/or to a deficient nega-
tive feedback to a reduction of GRs in the hippocampus [67,68].
Some authors have suggested that HPA hyperactivity is charac-
teristic of particular subgroups such as melancholic
depression [69] or psychotic depression [70]. However, currently
no consensus appears to exist on this issue. Several studies have
reported that cortisol elevations are associated with cognitive def-
icits in these patients, but the results are inconsistent [71]. Hippo-
campal atrophy has been reported in several structural magnetic
resonance imaging (MRI) studies with depressed patients (see
[72,73] for recent meta-analyses). Moreover, some studies suggest
that this volume reduction is associated with disease length or the
recurrence of depressive episodes [74,75]. While these findings
would be in line with the idea of a GC- or stress-induced hippo-
campal atrophy, studies linking these two processes are rare and
results have been conflicting [76–78]. In the future, a better charac-
terization and understanding of subtypes of this disorder will
hopefully help to resolve the unclear empirical situation [69]. 

Post-traumatic stress disorder

Patients with post-traumatic stress disorder (PTSD) have been
reported to show reduced basal cortisol levels, which is proba-
bly due to an enhanced negative feedback of the system [79].
The HPA situation in these patients is, therefore, different from
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those occurring during GC therapy, Cushing’s disease, aging or
depression. Recent small-scale clinical studies have suggested
that cortisol treatment shortly after the trauma might help to
prevent PTSD [80]. Moreover, even patients with chronic PTSD
appear to benefit from low-dose cortisol treatment as suggested
by a placebo-controlled pilot study with three patients [81]. The
cortisol-induced impaired emotional memory retrieval, in com-
bination with an enhanced and more elaborate (place and time)
reconsolidation, might help to reduce the core symptoms of
PTSD. Moreover, higher cortisol levels during the second half
of the night might reduce the sleep-associated facilitating effect
of cortisol on emotional material, which could reduce the
amount of nightmares [53]. The PTSD findings illustrate that
too much, as well as too little, endogenous cortisol can be asso-
ciated with distinct memory disturbances. Moreover, the small
clinical studies suggest that cortisol might have interesting and
so far underused psychopharmacological properties. 

Aging

Subtle increases in cortisol levels occur during human aging. In
particular, an increase in basal HPA activity during the nadir
(first half of the night) has been reported in several studies [82].
In addition, pharmacological challenge studies observed a
reduced negative feedback of healthy older subjects when
compared with younger subjects [83–85]. 

Animal studies have suggested that enhanced HPA activity is
associated with poorer memory and that behavioral or pharma-
cological studies, leading to stable HPA activity throughout
life, prevent age-associated decline (see above). In older, other-
wise healthy humans, several observational studies reported
associations between elevated or rising cortisol levels and
declarative memory impairments [86–89]. Whether these associa-
tions are specific for declarative memory or are, in fact, broader
(also including working memory or attention) is debatable.
Obviously, all of these human studies do not allow a clear
cause–effect interpretation. In addition, the possible structural
correlate of these hormone-performance associations remains to
be firmly established. Here, the possible association between
rising cortisol levels and atrophy of the hippocampus is still not
sufficiently understood and the current empirical situation is
heterogeneous. While two small studies observed a negative
association between hippocampal volumes and basal cortisol
levels [85,90], a larger study failed to find such an association [89]. 

Similar to the animal studies mentioned above, recent evi-
dence provided by Yau and Seckl suggests that local GC metab-
olism might also be important for memory during human
aging. mRNA of the enzyme 11β-HSD, which converts in-
active into active GCs, is expressed in the human hippocampus
and frontal cortex. A small pilot-study showed that the
11β-HSD inhibitor, carbenoxolone, improved some aspects of
memory in older men, as well as in older patients with Type 2
diabetes [91]. In addition, underlining the importance of local
GC metabolism is a study reporting that a genetic susceptibility
for Alzheimer dementia could be linked to the gene encoding
11β-HSD [92].

Finally, even though the present chapter focuses on GCs
and memory, it should be emphasized that other hormonal
influences are important. With respect to aging, elevated cor-
tisol levels are often part of the metabolic syndrome or part of
several indices of chronic stress summarized within the allo-
static load model [93]. Other aspects of these nonfavorable
endocrine conditions are impaired glucose tolerance and
hypertension. These alterations have also been associated with
memory impairment and hippocampal atrophy during
aging [94,95]. In fact, chronic stress, depression and Type 2
diabetes might exacerbate in a synergistic fashion the negative
impact on the hippocampus. Future studies on the issue of
HPA activity in aging should be aware of the fact that these
changes most often do not occur in isolation and should
obtain a broader endocrine assessment. 

Working memory: acute & chronic effects
Similar to the situation in animals, the effects of GCs on PFC-
mediated working memory have received less attention. Acute
impairing effects on working memory have been reported in
some studies in humans [28,96,97] but results have been some-
what inconsistent [42,43]. 

With respect to chronic effects, elevated basal GC levels
have been associated in some studies with smaller volumes of
some regions within the PFC (e.g., the anterior
cingualte [85]). The PFC is, of course, not only involved in
working memory but also in executive functions. These have
received even less attention, thus additional research efforts
are still needed.

Stress & the brain: sex differences in human studies
The area of sex differences on the effects of stress on the
human brain has received little attention to date. For emo-
tional memory and its neuronal correlates, sex differences
have been reported. Differences in emotional memory lateral-
ization and differences in the effects of adrenergic manipula-
tions have been found [98]. In addition, some studies observed
that psychosocial stress has different effects on memory or fear
conditioning in men versus women [99–101]. In all three of
these studies, stress-induced cortisol elevations or basal corti-
sol levels were more closely associated with changes in cogni-
tion in men – a finding in line with animal studies [36]. In
contrast, exogenous cortisol application appears to influence
declarative memory for women and men to a similar
degree [38,39,41,102]. However, in one study, we observed a
reduced effect in women taking oral contraceptives (OCs)
[102]; whether this is caused by the action of the synthetic sex
steroids in the brain and/or by the reduced endogenous sex
steroids of OC users awaits investigation. 

For more chronic GC studies and for studies examining asso-
ciations between cortisol and cognition in aging or disease, no
systematic sex differences have been observed or reported. 

So, while there is some evidence for sex differences in the
CNS effects of stress hormones in humans, this area does not
receive the attention needed.
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Expert commentary
Studies conducted within the last 10 years have substantially
helped to better characterize the effects of GCs on brain
function and structure. The scientific exchange and the close
interaction of researchers working with animal models with
researchers studying human volunteers or patients has
resulted in a more differentiated understanding of the effects
of stress on memory. Naturally, things have become more
complex since over simplifications such as ‘stress impairs
memory’ are no longer possible. Acutely, the stress-induced
GC rise supports memory consolidation but, in parallel,
impairs memory retrieval. The positive effect of stress on
consolidation ensures that we remember well the most
important information, thus enabling us to separate relevant
from irrelevant issues. The negative effects of stress on
retrieval might hinder us in performing well in a school or
university exam or at an important job meeting. In addition,
GCs also appear to reduce the amount of items storable in
working memory, but this is less well documented than the
effects on declarative long-term memory. Interestingly, there
is now convincing evidence that for several acute effects of
GCs on memory, adrenergic activation in the basolateral
nucleus of the amygdale is a prerequisite. This activation can
be induced either through the cognitive task itself, through
the test situation (e.g., novel unfamiliar environment), or
through the test material (e.g., emotional items). This inter-
action of the two stress systems (SNS and HPA) is important
and opens up a new avenue for behavioral as well as
pharmacological interventions. 

Quite striking sex differences have been observed in several
animal studies. The direction of the effect appears to be task
specific. For example, in animals, acute stress enhances spatial
memory but impairs classical eyelid conditioning in females
while, for both tasks, the opposite is observed for male animals.
In humans, this area is less well investigated. Since not only sex,
but also phase of the menstrual cycle and intake of synthetic
hormones as a way of contraception or postmenopausal hor-
mone replacement, could influence the effects of stress hor-
mones on the brain, studies on sex differences in humans
require large subject numbers. However, this should not be
accepted as a continuous excuse to only study men, thereby
ignoring 50% of the population. 

Chronic stress or chronic GC treatment by and large has neg-
ative effects on the brain as well as on the body. These observa-
tions are relevant to psychiatric disorders, as well as to the aging
process. It is very difficult and time consuming to study these
relationships in the human, so the current empirical situation
still relies on mostly small cross-sectional studies. While most
of these suggest that chronically elevated GC levels have a nega-
tive impact on the brain, it is encouraging that recent research
has observed evidence for preserved functional and structural
plasticity once the stress has ceased or GCs are back to normal
levels. Moreover, several pharmacological interventions have
been proven successful in animal models and await clinical
trials in human patients. 

Five-year view
Neuroimaging
Animal studies have used site-specific lesions as well as site-
specific injections in order to demonstrate the brain regions
important for the modulatory actions of GCs on memory.
While these approaches cannot be applied to human volun-
teers, advances in the field of functional imaging (positron
emission tomography [PET] or functional MRI) allow for a
localization of hormone effects on the brain. Currently, only
one study has investigated the effects of cortisol administra-
tion on memory retrieval with PET [40]. More studies will be
published aiming at characterizing in vivo the neuronal cir-
cuits influenced by the hormone or by stress. Those studies
will help to bridge the gap between the detailed neuroana-
tomical knowledge obtained in studies with rodents and the
behavioral findings obtained in humans, which only indi-
rectly allow a speculation about the involved brain structures. 

With respect to more chronic effects, longitudinal studies
will be conducted. These will, in addition to volumentric
measures, also incorporate new imaging techniques such as
diffusion tensor imaging. So, in addition to information
about the volume of a specific structure, information about
the connectivity of this structure will also be available. The
combination of different imaging techniques will provide a
more elaborate view of the impacts of stress hormones on the
human brain. 

Individual differences
One of the most striking observations when it comes to stress
is the substantial presence of interindividual differences.
While some advances have been made to explain inter-
individual differences in the endocrine stress response, little
effort has been made to characterize differences in the
response of the brain to stress or stress hormones. Such differ-
ences might be able to account for the variance observed
within, as well as between, studies. Individual differences
could reflect genetic factors [92], but could also be related to
pre- or postnatal influences or differences in lifetime cortisol
exposure [103]. Attempts to characterize subgroups with high
versus low cortisol sensitivity will be one important goal for
the next 5 years. Individuals with high CNS GC sensitivity
might be at a higher risk for stress-associated psychiatric dis-
eases and might respond with more negative side effects
(e.g., steroid dementia) to GC therapy. 

One aspect closely related to individual differences is the
issue of sex differences. More knowledge will be presented,
which, in the long run, will help us to understand sex differ-
ences in stress-associated disorders. Future studies will better
characterize whether these sex differences are related to differ-
ences in the neuroendocrine stress response or differences in
the response of the brain to endocrine stress messengers.
Moreover, it will become more apparent whether these effects
are the result of organizational effects of gonadal steroids
(estradiol, progesterone and testosterone) in utero or early in
life, or whether these effects are mediated by the current
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activational action of gonadal steroids. Based on the prelimi-
nary data obtained in humans and the impressive results from
animal models, it can be predicted that sex differences will be
different for different memory types as well as for different
memory phases. 

Pharmacological & clinical perspectives
Animal studies have demonstrated multiple ways to modulate
the effects of stress hormones on the brain. For example, acute
β-blocker treatment abolished the effects of GCs on memory
consolidation, as well as on retrieval. Similar studies will be
conducted in human experimental studies. These observations
could be the basis for more hypothesis-driven studies in psychi-
atric disorders. Beneficial effects of cortisol have been docu-
mented in the context of PTSD. Future studies will investigate
whether cortisol might also display beneficial effects in the
context of anxiety disorders. 

Chronically elevated GCs influence brain function and struc-
ture in several psychiatric or endocrine diseases, as well as dur-
ing the aging process. More longitudinal studies will be con-

ducted and published on this important topic in the next few
years. Ideally, such studies would combine a careful and broad
endocrine evaluation with a neuropsychological test battery and
structural and functional imaging data. The knowledge gained
from these studies will ultimately lead to pharmacological or
behavioral interventions aiming to protect the brain from some
of the negative impact of chronically elevated GC levels. The
recent report of beneficial effects of the 11β-HSD inhibitor
carbenoxolone on the memory of older subjects demonstrates
the promise of these kind of interventions [91]. These develop-
ments will hopefully also influence the pharmaceutical industry
to pay more attention to the brain as a location of negative GC
side effects. This could lead to novel medications that preserve
the beneficial effects of the currently used GCs, but reduce or
abolish the negative effects on mood and memory. 
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Key issues

• Acutely, glucocorticoids (GCs) have positive, as well as negative, effects on memory.

• GCs enhance emotional long-term memory consolidation, while in parallel impairing long-term memory retrieval.

• GCs interact with adrenergic activation in the amygdala in order to modulate other brain regions (e.g., the hippocampus and the 
prefrontal cortex).

• Chronically elevated GC levels are associated with memory impairments, a finding of relevance for GC therapy, Cushing’s disease, 
depressive disorder and normal aging. 

• An insufficient stress response might increase the risk for the occurrence of post-traumatic stress disorder (PTSD). Small placebo 
controlled studies have suggested that GC treatment might help to prevent or treat PTSD.

• In the face of chronic stress or chronic GC treatment, recent findings suggest that functional and structural plasticity of the brain 
is often preserved.

• Novel treatment options for several diseases characterized by hypothalamic–pituitary–adrenal axis abnormalities are on 
the horizon.
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