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               INTRODUCTION 

 In an earlier study, we described the application of the First 
Order System Transfer Function to maze learning that al-
lowed assessment of three psychophysiological parameters: 
the learning rate, readiness to learn, and ability to learn. The 
model was found to provide excellent fi ts for both group data 
and for individual animals under acquisition and reacquisi-
tion and was able to detect strain differences among Wistar 
and albino rats. We have shown that the learning curve could 
be more or less equally well approximated with the hyper-
bola, the arc cotangent, the logarithmic or exponential trans-
fer function, but the proposed transfer function model is 
preferable to others because it coincides with the popular 
Rescorla-Wagner model of classical conditioning, and the 
model’s coeffi cients allow psychophysiological interpreta-
tion (Stepanov & Abramson,  2008 ). 
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   Abstract 

 Very few attempts have been made to apply a mathematical model to the learning curve in the California Verbal 
Learning Test list A immediate recall. Our rationale was to fi nd out whether modeling of the learning curve can add 
additional information to the standard CVLT-II measures. We applied a standard transfer function in the form Y = 
B3*exp(-B2*(X-1))+B4*(1-exp(-B2*(X-1))), where X is the trial number; Y is the number of recalled correct words, 
B2 is the learning rate, B3 is readiness to learn and B4 is ability to learn. The coeffi cients of the model were found to be 
independent measures not duplicating standard CVLT-II measures. Regression analysis revealed that readiness to learn 
(B3) and ability to learn (B4) were signifi cantly ( p  < .05) higher in a group of healthy participants than in a group of 
participants with type 2 diabetes mellitus (T2DM), but the learning rate (B2) did not differ ( p  > .2). The proposed 
model is appropriate for clinical application and as a guide for research and may be used as a good supplemental tool 
for the CVLT-II and similar memory tests. ( JINS , 2010,  16 , 443–452.)  
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 Next we now apply the model to the California Verbal 
Learning Test – II (Delis, Kramer, Kaplan, & Ober,  2000 ). 
To fi t the mathematical model to memory data in experi-
mental psychology and clinical practice we believe that two 
conditions must be met. First, a large number of test objects 
must be presented and second, a suffi cient number of trials 
must be used to ensure a proper assessment of the asymp-
totic level of learning. Not all memory tests fulfi ll these re-
quirements. For example, the Wechsler memory scale word 
list I consists of 12 words, but only 4 trials (Wechsler,  1997 ); 
the Brief Visuospatial Memory Test uses only three trials 
(Benedict,  1997 ) and a test developed for learning of Rus-
sian words (Golden,  1985 ; Luria,  1962 ) uses seven trials, 
but only ten words. The California Verbal Learning Test — 
second edition (CVLT-II) rises above the others, in that 16 
words from list A are used with 5 trials (Delis et al.,  2000 ). 

 Although the authors of the CVLT-II provided standard-
ized scores for each of the fi ve learning trials, no quantitative 
analysis of the learning curve has ever been applied to list A 
(Delis et al.,  2000 ). Only one attempt has been made to apply a 
mathematical model to the CVLT learning curve. Warschausky 
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and colleagues used a quadratic model in the form a x 2  + b x 
to fi t learning curves obtained with the California Verbal 
Learning Test — Children’s version (Warschausky, Kay, Chi, 
& Donders,  2005 ). However, the authors treated the model’s 
two coeffi cients ( a  and  b ) as different learning rate parameters. 
Unlike our model, Warschausky et al. ( 2005 ) were not able 
to assess readiness to learn and ability to learn as our model 
does. 

 Taking into account that the CVLT-II is widely used in 
experimental psychology and clinical practice (Rabin, 
Barr, & Burton,  2005 ), we concentrated our effort on ap-
plication of the fi rst order system transfer function mathe-
matical model to the CVLT-II data from Bruehl and 
colleagues (Bruehl et al.,  2007 ). Applications of the math-
ematical model to individual data and to data averaged 
across a group are also presented. Measures obtained from 
the mathematical model are compared with the standard 
CVLT-II measures. We illustrate that fi tting the learning 
curve with the fi rst order system transfer function yields 
additional information not currently available with stan-
dard CVLT-II measures.   

 METHODS  

 Participants 

 Fifty-eight participants were used and equally divided into 
control and clinical groups. Twenty-nine healthy volunteers 
participated in the control group. The participants were part 
of a larger study of normal aging. All lived independently, 
were between 43 and 74 years of age, had at least a high 
school education, and were in the cognitively normal range. 
Within the group, 15 participants met the criteria for hyper-
tension and 6 participants met the criteria for dyslipidemia. 
Participants provided informed written consent and were 
compensated for their participation. Evidence of neurolog-
ical, medical (other than dyslipidemia, or hypertension), or 
psychiatric (including depression and alcohol or other sub-
stance abuse) problems excluded individuals from partici-
pating in the study. 

 A clinical group consisted of 29 participants with type 
2 diabetes mellitus (T2DM) meeting one or more of the 
following criteria: (1) a fasting glucose value greater than 
125 mg/dl on two separate occasions, (2) a 2-hour glucose 
value greater than 200 mg/dl during a 75-gr oral glucose 
8 tolerance test, or (3) a prior diagnosis of T2DM and treat-
ment with hypoglycemic agents and/or diet and exercise. 
All other clinical details are available in the study of Bruehl 
et al. ( 2007 ). 

 This study was approved by the New York University 
School of Medicine Institutional Review Board, which is 
where the participants were evaluated. Human research was 
completed in accordance with the guidelines of the Helsinki 
Declaration “WORLD MEDICAL ASSOCIATION DEC-
LARATION OF HELSINKI. Ethical Principles for Medical 
Research Involving Human Subjects”.   

 Evaluations 

 All participants underwent an assessment that included a 
physical examination and endocrine, neuropsychological, 
and psychiatric evaluations. All details are available in the 
study of Bruehl et al. ( 2007 ).   

 Neuropsychological and Psychiatric Assessment 

 The cognitive assessments were standardized neuropsycho-
logical tests described in detail elsewhere (Lezak,  1995 ). 
Signifi cant group differences were found for intelligence 
(IQ) estimated with WAIS-R full 12 scale IQ scores, with 
diabetic individuals having a normal but lower IQ than con-
trol participants (individuals with T2DM: 105.2, SEM = 2.2, 
 SD  = 11.7); controls: 115.3, SEM = 1.31,  SD  = 7.07;  t  = 
3.969;  df  = 46;  p  < .001). Declarative memory was assessed 
with the CVLT-II. The raw scores from list A (immediate 
free recall) on trials 1–5 were used for the fi tting of averaged 
and individual learning curves.   

 Statistical Analyses  

 Description of the mathematical expression of the 
transfer function of the fi rst order linear system 

 The mathematical background of the application of the 
transfer function of the fi rst order linear system in response 
to a stepwise input action for assessment of the learning 
curve was provided elsewhere (Stepanov & Abramson,  2008 ). 
During a free recall memory test (such as the CVLT-II), 
presentation of a list of words acts as a stepwise input signal 
that begins to act upon a participant under testing for the fi rst 
time on the fi rst trial. The output signal (the number of cor-
rectly recalled words) is random because human behavior is 
treated as any complex biological system; thus a nonlinear 
regression analysis should be used to evaluate the parame-
ters of our model of the learning curve (Draper & Smith, 
 1981 ; Himmelblau,  1970 ). 

 We adopted the fi rst order transfer function for the assess-
ment of the learning curve in the form Y = B3 e −B2 (X − 1)  + 
B4(1 − e −B2 (X − 1) ). In the case of the CVLT-II, X is the trial 
number and Y is the number of correctly recalled words 
without repetitions. The parameters are: B2 — the learning 
rate; B4 — the asymptotic value of recalled words at X = 
Infi nity; B3 — the number of correctly recalled words on the 
fi rst trial (i.e., B3 = Y at X = 1). 

 Use of the independent variable in the form of (x-1) means 
that the fi rst trial, i.e., at x = 1, assesses auditory attention 
span (Delis et al.,  2000 ) or in our terminology the back-
ground readiness to learn. Learning itself begins when the 
list of words is presented repeatedly, Trial 2 being the fi rst 
repetition. In accordance with the defi nition of the transfer 
function, the rate of achievement of the asymptotic value is 
named “the time constant ( τ )”. The time constant reveals 
how much time (after trial 1) is necessary for achievement of 
63% of the difference between the initial and asymptotic 
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levels of the output signal (Grodins,  1963 ; Milsum,  1966 ). 
The solution of the background differential equation shows 
that B2 = 1/ τ  (Stepanov & Abramson,  2008 ). Thus, regarding 
learning of target words 1/B2 is the number of trials after 
trial 1 needed to reach 63% from the difference between the 
initial (B3) and asymptotic (B4) values of correctly recalled 
words.   

 Comparison of the model’s coeffi cients with 
appropriate standard CVLT-II measures 

 Coeffi cient B3 is very close to the level of correct recall on 
trial 1 — the standard measure used in CVLT-II. Delis et al. 
( 2000 ) pointed out that “performance on the fi rst immediate-
recall trial of List A (Trial 1) is thought to be especially de-
pendent on auditory attention span” (Delis et al.,  2000 , 
p. 28). We treat B3 as an estimator of the functional state of 
a participant that includes, in particular, auditory attention 
span, previous experience with the test, and readiness to 
learn. Below we will designate B3 as “readiness to learn.” 
There are norms for Trial 1 recall, so it is possible to com-
pare the Trial 1 value of a participant with previously pub-
lished norms. However, if the same participant undergoes 
repeated retesting, it is impossible to compare Trial 1 values 
between the test sessions. On the other hand, B3 is a random 
variable with its mean and variance values, so that statistical 
comparison of B3 values among different participants or 
repetitions is possible. 

 Memory mechanisms are refl ected in the learning rate 
(B2) and asymptotic level (B4), the later being designated 
below as “ability to learn”. In the case of the CVLT-II, B4 is 
the maximal possible number of correctly recalled words af-
ter a very large number of trials. It is necessary to mention 
that, if the rate of learning is low, the number of trials is not 
enough for the learning curve to reach asymptote, so that B4 
can take on a value much greater than 16 test words. Poor 
learning is refl ected in low values of B4. Hence, it is impos-
sible to preset B4 to the number of test words (for example, 
to 16 in the CVLT-II). Our rationale for not presetting coef-
fi cient B4 is that the number of correctly recalled words does 
not always increase up to the number of test words. There is 
no analogue among standard CVLT-II measures to B4. 

 The CVLT–II provides a measure of learning rate in the 
form of the Learning Slope score that is measured by com-
puting a least squares regression of the linear model. The 
slope of the regression line refl ects the average number of 
new recalled words per trial. On the other hand, the coeffi -
cient B2 is interpreted mathematically within the transfer 
function theoretical framework as the time constant and re-
fl ects the number of trials needed to reach difference be-
tween B3 and B4. It means that B2 differs in principal from 
the Learning Slope.   

 Estimation of the parameters of the model 

 The statistical package SPSS provides very fl exible curve 
fi tting procedures that can be used to estimate the model’s 
parameters. SPSS uses gradient algorithms that require the 

user to input starting values of the model’s parameters. The 
starting values should be set as follows: the starting value for 
B2 should be equal to 1, for B3 — to the Trial 1 value, and 
for B4 — to the maximal value over all trials.   

 Verifi cation of the model: Group data 

 We verifi ed the model with the test for goodness of fi t as it 
is accepted in regression analysis both for linear models 
(Himmelblau,  1970 ) and with approximate test for goodness 
of fi t for nonlinear models (Draper & Smith,  1981 ). 

 The test of goodness of fi t for linear models is based on 
calculation of the variance ratio of the residual variance to 

the variance of the error of the measurement:   F
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 Next, signifi cance level (p) for F exp  is calculated with the 
number of degrees of freedom for the numerator (df1) equal 
to (n-3) and with the number of degrees of freedom for the 

denominator (df2) equal to   
n
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function for the F-distribution. If the residual variance does 
not signifi cantly exceed the variance of the error of the mea-
surement or, in other words, the signifi cance level for F exp  
is p > 0.2, then the mathematical model fi ts the data well 
(Himmelblau,  1970 ). 

 We also used an approximate test for goodness of fi t for 
nonlinear models (Draper & Smith,  1981 ). This test is 
based on calculations of the sum of squares of the differ-
ences between experimental values and the values calcu-
lated with the mathematical model as well as the 
calculation of the sum of squares of “pure errors.” These 
values are placed in a special formula that gives a vari-
ance ratio belonging to the Fisher’s F-distribution and 
named “the ratio of averaged squares”. Next, the value of 
F-quantile with the confi dence level  p  = .95 and degrees 
of freedom df1 and df2 (see above) can be calculated by 
means of the SPSS menu item “Transform | Compute…“ 
by inputting a built-in function IDF.F(0.95,df1,df2) that 
should be selected from the list “Functions:” in the fi eld 
“Numeric expression:”. If the ratio of averaged squares is 
less than the appropriate F-quantile, then the mathemat-
ical model fi ts the data satisfactorily.   

 Verifi cation of the model: Individual data 

 If the regression analysis is applied to the learning curve of 
an individual participant, then the measurement error vari-
ance cannot be estimated separately from residual variance 
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that is an estimation of the quality of the fi t. Thus, in the case 
of fi tting a single participant’s learning curve, it is impos-
sible to estimate signifi cance of fi tting with the mathematical 
model. However, it is possible to calculate the part of vari-
ance explained with the model by means of the calculation 
R squared that is used in Excel, SPSS and other statistical 
packages.
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 where n is the number of trials, Y i  is the experimental value, 
Y i mod  is calculated model value, and   Y  is the average mean 
calculated over all experimental values.   

 Comparison of the model’s coeffi cients 

 Model’s coeffi cients are compared with  t -test. The test, 
which is applied to the regression coeffi cients, is used as 
follows. The statistics t k  is calculated by the formula 
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 where k = 2, 3, 4 and denotes the coeffi -

cient B2, B3, or B4; i and j are indexes of the learning curves, 
and DB is the variance of a coeffi cient. SPSS calculates as-
ymptotic standard error for the coeffi cients. For this purpose 
it is necessary to square asymptotic standard error for calcu-
lation of DB. The number of degrees of freedom (DF) for the 
statistics t k  is equal to 4 (2*(the number of trials – the number 
of coeffi cients)). A value of t k  can be calculated by means of 
the SPSS menu item “Transform | Compute…“. The formula, 
with appropriate values of the coeffi cients and their vari-
ances, is entered into the fi eld “Numeric expression:” of the 
window “Compute variable.” The same window is used for 
calculating a two-way signifi cance level p. The formula 
2*(1-CDF.T(t,df)) is entered into the fi eld “Numeric expres-
sion:”. CDF.T is a built-in function that should be selected 
from the list “Functions:”; t is t k  and df is the number of 
degrees of freedom, which is 4.   

 Standard statistical methods 

 The mean and variances of the samples used for the mod-
el’s measures were estimated as usual. The correlation be-
tween CVLT-II Trial 1, Trial 5, Trials 1–5 total correct 
measures, and B2, B3, and B4 was assessed with Pearson’s 
correlation coeffi cient. SPSS 11.5 was used for all statistical 
calculations.     

 RESULTS 

 A mathematical model suitable for research and practical 
use should approximate learning curves obtained from both 
group and individual data. Thus, at fi rst we show the applica-
bility of our model to averaged learning curves and next il-
lustrate how the model fi ts individual learning data.  

  
 Fig. 1.        The averaged learning curves for healthy participants and 
participants with type 2 diabetes mellitus (T2DM). Filled circles 
are averaged data for 29 healthy participants, and fi lled triangles are 
averaged data for 29 participants with T2DM. Vertical lines are 
means with SEM. Readiness to learn is higher for the healthy par-
ticipants ( p  = .032) as well as ability to learn ( p  = .015), but the 
learning rate does not differ ( p  > .2).    

 The Averaged Learning Curves 

 This section illustrates how the model provides good fi ts with 
learning data averaged over a group of participants. We also 
provide an example of the ability of the model to distinguish 
between the average learning curve of healthy participants 
and the averaged learning curves of diabetic participants. 

 The averaged data across the 29 healthy participants pro-
vided a good fi t between actual data and our model. The sig-
nifi cance level ( p  = .90) for F exp  is much greater than 0.2. 
The ratio of averaged squares (0.106) is far less than the 
F-quantile, which is equal to 3.06. The value of the square of 
correlative relation R 2  = 0.999 is also consistent with good 
approximation of the learning curve with the proposed 
model. The values of the model’s coeffi cients are as follows: 
B2 = 0.77 (asymptotic standard error = 0.062), B3 = 8.6 
(asymptotic standard error = 0.12) and B4 = 14.7 (asymp-
totic standard error = 0.16). 

 The averaged data across the 29 participants with T2DM 
also provided a good fi t. The signifi cance level ( p  = .78) for 
the F exp  is much greater than 0.2. The ratio of averaged 
squares (0.250) is far less than the F-quantile, which is equal 
to 3.06. The value of R 2  = 0.993 is also consistent with satis-
factory approximation of the learning curve with the pro-
posed model. The model’s coeffi cients are as follows: B2 = 
1.08 (asymptotic standard error = 0.19); B3 = 7.7 (asymp-
totic standard error = 0.24); B4 = 12.6 (asymptotic standard 
error = 0.21). Both learning curves are shown in  Figure 1 . 
Comparison of the control group and the diabetic group re-
vealed that readiness to learn (B3) was higher for the healthy 
participants (t B3  = 3.23;  p  = .032); ability to learn (B4) was 
also higher for the healthy participants (t B4  = 7.68;  p  = .015), 
but the learning rate (B2) did not differ (t B2  = 0.21;  p  > .2). 
Thus, T2DM led to signifi cant downward defl ection of the 
average learning curve for the diabetics with respect to the 
average learning curve for the controls (see  Figure 1 ).     
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 Thus, the model can be used for the assessment of aver-
aged learning curves. Below we show how the model fi ts 
individual learning data and illustrate the model’s advan-
tages and disadvantages as applied to individual learning 
data.   

 Individual Learning Curves for Healthy 
Participants 

 From a practical point of view, individual learning curves are 
of primary interest. It is obvious that a clinician is interested 
in monitoring individual patient treatment related changes 
by means of comparing learning curves before, during, and 
after treatment. Even if averaged curves are needed for ex-
amination, the initial stage of analysis should nevertheless 
begin with fi tting of individual learning curves. Averaging 
across participants might give a misleading picture of what 
occurs in individual participants (Brown & Heathcote,  2003 ; 
Estes,  2002 ; Gallistel, Fairhurst, & Balsam,  2004 ; Wixted, 
 1997 ). That is why we separately calculated individual 
learning curves for each healthy participant. The number of 
recalled words is an integer stepwise function that is fi tted 
with a smooth monotonic mathematical model. Thus, B3 

and B4 are real decimal numbers. For example, for participant 
2873 ( Table 1 , item 6), who correctly recalled 9-13-16-16-16 
words over the fi ve trials, B3 was 8.9 and B4 16.5.     

 The results of the regression analysis of the data for each 
participant are given in  Table 1 .  

 Values of the model’s measures 

 Values of readiness to learn (B3) ranged from 5.0 to 13.0 
across the participants. The mean value was equal to 8.5 
(SEM = 0.41). The distribution of B3 did not differ from the 
normal distribution ( p   ≥  .12). The mean value was close to 
that found for the averaged learning curve (B3 = 8.6). Both 
values of B3 were consistent with Miller’s magic number 
7 ± 2 for short memory span (Miller,  1956 ). 

 Learning parameters are refl ected in ability to learn (B4) 
and the learning rate (B2). Values of the ability to learn (B4) 
ranged from 9.25 to 26.6. The mean value was 15.6 (SEM = 
0.51). The distribution of B4 across the sample differed from 
normality ( p  < .001). The mean value also differed from that 
of the averaged learning curve (B4 = 14.7). The lowest value 
of B4 (9.25) was found in participant 4208 ( Table 1 , item 
29). Our model suggests that participants with low B4 values 

 Table 1.        The regression analysis of individual learning curves for healthy participants                          

   No  Participant’s ID 

 Trials  Model’s coeffi cients ± asymptotic standard error 

 R 2     1  2  3  4  5  B2  B3  B4     

 1.  1138  9  12  14  15  14  0.88 ± 0.394  8.9 ± 0.69  14.8 ± 0.77  0.958   
 2.  1444  10  16  16  15  16  22.59 ± 12.5E07  10.0 ± 0.61  15.75 ± 0.35  0.972   
 3.  2308  10  12  15  16  15  0.63 ± 0.46  9.8 ± 1.01  16.2 ± 1.77  0.917   
 4.  2761  6  10  12  13  14  0.59 ± 0.065  6.0 ± 0.19  14.7 ± 0.37  0.998   
 5.  2783  7  9  12  13  12  0.63 ± 0.46  6.8 ± 1.01  13.2 ± 1.77  0.917   
 6.  2873  9  13  16  16  16  0.92 ± 0.29  8.9 ± 0.64  16.5 ± 0.68  0.978   
 7.  2970  9  13  14  15  16  0.69 ± 0.20  9.1 ± 0.47  16.1 ± 0.73  0.984   
 8.  2985  11  12  14  15  16  0.10 ± 0.14  10.9 ± 0.33  26.6 ± 18.20  0.986   
 9.  3187  11  12  15  16  16  0.32 ± 0.35  10.7 ± 0.84  18.6 ± 4.80  0.932   
 10.  3277  13  16  16  16  16  20.3 ± 0.000  13.0 ± 2.8E-09  16.0 ± 1.4E-09  1.000   
 11.  3309  9  13  13  13  13  20.2 ± 0.000  9.0 ± 4.2E-09  13.0 ± 2.1E-09  1.000   
 12.  3648  9  11  14  11  15  0.46 ± 1.07  9.1 ± 2.10  14.8 ± 6.20  0.624   
 13.  3759  10  14  15  16  15  1.33 ± 0.48  10.0 ± 0.55  15.5 ± 0.43  0.973   
 14.  3765  9  11  13  13  15  0.24 ± 0.26  9.1 ± 0.64  18.2 ± 6.30  0.958   
 15.  3766  6  11  12  16  14  0.70 ± 0.51  6.0 ± 1.60  15.4 ± 2.40  0.912   
 16.  3767  13  14  16  16  16  0.59 ± 0.45  12.9 ± 0.57  16.6 ± 1.10  0.918   
 17.  3836  8  11  14  15  16  0.42 ± 0.11  7.9 ± 0.38  17.9 ± 1.30  0.993   
 18.  3888  8  13  13  13  15  1.61 ± 1.18  8.0 ± 1.10  13.9 ± 0.80  0.909   
 19.  3892  6  10  11  13  13  0.65 ± 0.22  6.1 ± 0.56  13.7 ± 0.94  0.981   
 20.  3893  6  11  12  15  15  0.56 ± 0.26  6.1 ± 0.89  16.2 ± 1.90  0.970   
 21.  3968  10  13  16  15  16  0.87 ± 0.49  9.9 ± 0.91  16.1 ± 1.04  0.936   
 22.  4052  5  11  13  15  14  0.96 ± 0.26  5.0 ± 0.71  14.7 ± 0.73  0.984   
 23.  4066  9  14  16  14  15  2.11 ± 1.75  9.0 ± 1.10  15.0 ± 0.67  0.924   
 24.  4068  8  11  13  13  12  1.28 ± 0.74  8.0 ± 0.77  12.7 ± 0.62  0.930   
 25.  4098  6  9  11  15  11  0.73 ± 0.96  5.8 ± 2.30  13.2 ± 3.30  0.750   
 26.  4133  6  7  9  12  11  0.21 ± 0.45  5.7 ± 1.19  16.4 ± 15.69  0.883   
 27.  4190  8  10  12  13  12  0.73 ± 0.46  7.9 ± 0.75  12.9 ± 1.10  0.928   
 28.  4192  11  13  14  15  15  0.57 ± 0.13  11.0 ± 0.21  15.6 ± 0.42  0.992   
 29.  4208  6  10  7  9  11  21.4 ± 12.7E07  6.0 ± 2.10  9.25 ± 1.21  0.491   
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constitute a potentially interesting population for further 
study. 

 Values of the learning rate (B2) ranged from 0.10 to 22.59. 
The mean value was equal to 3.56 (SEM = 1.332). Distribution 
of the B2 sample differed from the normal distribution ( p  < 
.001). The mean value differed from that of the averaged 
learning curve (B2 = 0.77). 

 The quality of the fi t estimated with R squared was in the 
range from 0.491 to 1.000 with a mean value 0.916 (SEM = 
0.023). The highest values of R squared (1.000) were in par-
ticipants 3277 ( Table 1 , item 10,  Figure 4B ) and 3309 ( Table 1 , 
item 11,  Figure 4C ) although their B2 values happened to be 
outliers (see below). Among participants who were not out-
liers, the highest value of R squared (0.998) was found in 
participant 2761 ( Table 1 , item 4, and  Figure 2A ). The closest 
values to the mean R squared value were found in participant 
3767 ( Table 1 , item 16, and  Figure 2B ) and participant 3766 
( Table 1 , item 15, and  Figure 2C ). The lowest value among 
participants who were not outliers was in participant 3648 
( Table 1 , item 12, and  Figure 2D ). The lowest value over all 
participants was found in participant 4208 ( Table 1 , item 29, 
and  Figure 4D ) with B2 being an outlier.       

 Outliers: High B4 values 

 It is obvious that the number of correctly recalled words 
cannot exceed the number of words in a list (16 words). 
Strictly speaking, B4 > 16.0 was found in 11 of 29 partici-
pants. However, B4 values between 16.1 and 17.0 might rea-
sonably be viewed as resulting from fi tting integer-valued 
learning data with a smooth monotonic mathematical model. 

Excluding participants with B4 equal or less 17.0, four par-
ticipants remain as outliers, namely 2985 ( Table 1 , item 8, 
and  Figure 3 ), 3187 ( Table 1 , item 9), 3765 ( Table 1 , item 
14) and 3836 ( Table 1 , item 17). This is an effect of low 
learning rate, as it is defi ned in our model — the number of 
trials after trial 1 needed to reach 63% of the difference be-
tween B3 and B4. B2 ranged from 0.10 to 0.42 in these four 
participants. If the number of trials is not enough for a par-
ticipant to reach the model’s asymptote due to a very slow 
learning rate, then the learning curve resembles a straight 
line (see  Figure 3 ). As a result, B4 becomes too high and 
does not refl ect a true ability to learn. Thus, very high B4 
values are substantially an artifact of the shape of the learning 
curve in these outliers, which is refl ected in the value of B2. 
See below for further discussion.     

 There is another reason to pay attention to B4-outliers. 
Averaging individual B4 values without paying attention to 
possible outliers of individual participants might provide a 
misleading picture for ability to learn (B4). If these four out-
liers are excluded, the mean B4 value became equal to 14.8 
(SEM = 0.30), which is very close to the B4 value of 14.7 
found for averaged data.   

 Outliers: Extremely low B2 values 

 The fi rst class of B2 outliers represents a situation where 
values of B2 are extremely low. Five trials are not enough for 
participants with extremely low learning rates to approach 
their asymptotic level of recalled words. For example, B2 = 
0.10 for participant 2985, so that the learning curve is linear 
rather than exponential ( Table 1 , item 8, and  Figure 3 ). 

  
 Fig. 2.        Individual learning curves with different values of R squared. A: The participant 2761 (R squared = 0.998). 
B: The participant 3767 (R squared = 0.918). C: The participant 3766 (R squared = 0.912). D: The participant 3648 
(R squared = 0.624).    
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Participants with learning curves of this type should be 
considered as a population for further study.   

 Outliers: Extremely high B2 values 

 The second class of B2 outliers represents a situation where 
values of B2 are extremely high (see  Table 1 , items 2, 10, 11, 
and 29). Three learning patterns can be discerned. The fi rst pat-
tern is where the number of items learned on Trial 2 and subse-
quent trials is equal to 16 ( Table 1 , item 10, and  Figure 4B ) 
or very close to 16 ( Table 1 , item 2, and  Figure 4A ). We 
hypothesize that 16 items might be not enough for these par-
ticipants, because they can learn many more items. The sec-
ond pattern is where a participant reaches on the Trial 2 an 

  
 Fig. 3.        An individual learning curve with very low value of the 
learning rate (B2). The learning curve of the participant 2985 (B2 = 
0.10) looks more like a straight line then an exponent.    

asymptote that is less than 16 words ( Table 1 , item 11, and 
 Figure 4C ). The third pattern is where learning data are far 
from a monotonically increasing function and instead repre-
sent up and down fl uctuations in the number of recalled 
words across trials ( Table 1 , item 29, and  Figure 4D ). Indi-
viduals with extremely high B2 values should be considered 
as a population for further investigation.     

 If the four B2-outliers with extremely high values were 
excluded, then the mean value of B2 was reduced from 3.56 
to 0.75, which was very close to the B2 value 0.77 that was 
found for the averaged learning curve. 

 Although fi tting with SPSS is mathematically correct, 
these B2 outliers are far from biological plausibility. The 
fi rst order system reaches 99.3% of its asymptotic value 
during fi ve time constants (5 τ ) (Grodins,  1963 ). If a partici-
pant recalled all 16 words during Trial 2 (participant 1444, 
3277, 3309), then B2*(x-1) = 5 at x=2 and B2 = 5. This is a 
maximal biological plausible value for B2. Coeffi cient B2 
might take high value, if the number of correctly recalled 
words fl uctuates from trial to trial. This is a case with partic-
ipant 4208. Including these B2 outliers into a sample over all 
participants might substantially disfi gure a sample mean as 
well as other statistical sample measures. That is why we 
suggest that a method to correct high B2 values exceed 5 
should be developed.    

 Correlation Between the Model’s Coeffi cients 

 In this section we show that learning rate (B2) and readiness 
to learn (B3) are independent parameters and, probably, re-
fl ect different brain processes during new episodic memory 
formation. No correlation was found between the learning 

  
 Fig. 4.        Individual learning curves with very high values of the learning rate (B2). A: The participant 1444 (B2 = 22.59); 
B: The participant 3277 (B2 = 20.3); C: The participant 3309 (B2 = 20.2); D: The participant 4208 (B2 = 21.4). Learning 
data resemble a staircase function in A, B, and C. Learning data in D show up and down fl uctuations.    
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rate (B2) and readiness to learn (B3):  r  = 0.181;  p  > .2 or 
between B2 and ability to learn (B4):  r  = −0.264 ( p  > .16). 
However, a positive correlation was found between readi-
ness to learn and ability to learn:  r  = 0.438;  p  = .018.   

 Comparison of the Model’s Coeffi cients with 
Standard CVLT-II Trial 1, Trial 5, and Trials 1–5 
Total Free Recall Total Correct Measures 

 In this section, we show that the model’s measures do not 
contradict the standard CVLT-II measures, but instead sup-
plement them. A Pearson correlation coeffi cient was calcu-
lated between CVLT-II Trial 1, Trial 5, and Trials 1–5 total 
correct measures and B2, B3, and B4. The results, given in 
 Table 2 , revealed that coeffi cients B3 and B4 are correlated 
with all three CVLT-II measures. The highest correlation 
was found between B3 and Trial 1 measure because B3 
and List A Trial 1 values are very close. On the other hand, 
no correlation was found between B2 and the CVLT-II 
measures.        

 DISCUSSION 

 Our current fi ndings show that data from the CVLT-II list A 
immediate recall fi t well with the fi rst order linear system 
transfer function model we propose. The model is more sen-
sitive with respect to learning data in comparison with sub-
jective visual assessment and can provide a more precise 
assessment of the learning curve parameters. The measures 
obtained from the regression analysis of the learning curve 
do not contradict standard CVLT-II measures. On the con-
trary, the model’s coeffi cients provide additional important 
information. The absence of correlation between the CV-
LT-II measures and B2 illustrates that the CVLT-II measures 
cannot assess the time constant of the system in the way that 
B2 does easily. 

 The proposed model involves three parameters as well as 
the independent variable in the form (x-1). A three-parameter 
model possesses an advantage in comparison with a two-
parameter model, for example, a hyperbolic function in the 

form  
t

y k
t R

 (Mazur & Hastie,  1978 ), where y is the 

amount of learning, t is the amount of training, k is the as-
ymptote for learning, and R determines the rate of approach 

to this asymptote. A special coeffi cient in a three-parameter 
model—B3 in our model—easily allows assessment and 
comparison of auditory attention span. 

 Evidence supporting a three-parameter model was re-
cently provided by Zimprich, Rast and Martin (Zimprich, 
Rast, & Martin,  2008 ). They used the hyperbolic function in 

a form  
t 1

y(t) ( 1 ,
t 1

 where y(t) denotes 

the number of correctly recalled words at recall trial t,  α  is 
the upper asymptote of performance,  β  denotes initial per-
formance at t = 1 that is close to auditory attention span, and 
 γ  denotes the learning rate, i.e. the rate of approach from 
initial level to potential maximum performance. 

 Comparison of our model with Zimprich and colleagues 
clearly shows that  γ  is the same as B2,  β  is the same as B3, 
and  α  is the same as B4. What is especially interesting is that 
Zimprich and colleagues used an independent variable in the 
form (t-1). This is the same form which we use — (x-1). 
Thus, two independent groups of researchers created three 
parameter models that use the same form of the independent 
variable. As pointed out by Mazur and Hastie ( 1978 ), when 
three parameters are used the exponential equation and the 
hyperbolic equation were better able to fi t data than other 
models. Moreover, models based on exponential equations 
and hyperbolic equations yield similar results. 

 We believe that the fi rst order system transfer function 
is a universal model able to describe learning curves in 
simple learning paradigms in animals and humans as well 
as some memory tests such as CVLT-II. The fi rst and the 
second order transfer function models were also success-
fully applied to the ergonomic assessment of labor skills 
(Towill,  1976 ). 

 The number of trials and the number of items in a list can 
infl uence the calculated value of the learning rate and ability 
to learn. Five trials used with the CVLT-II may not be enough 
for some participants to reach their asymptote. The question 
of how many trials should be used for a memory test is im-
portant and deserves further consideration. On the one hand, 
the number of trials should be enough for a participant to 
reach asymptote. On the other hand, too many trials, for ex-
ample 10 as in Luria’s memory test using ten Russian words, 
often yielded a learning curve that degraded after the 7th 
trial. We explain the latter phenomenon as the consequence 
of fatigue. Our experience suggests that six trials are optimal 
for assessing the asymptotic value (B4). 

 Table 2.        Pearson’s correlation coeffi cients between CVLT-II Trial 1, Trial 5, and Trials 1–5 total correct measures and B2, B3, B4                  

   The model’s coeffi cient 

 CVLT-II measure   

 Trial 1  Trial 5  Total Trials 1–5   

 Pearson correlation r  Sig. (2-tailed)  Pearson correlation r  Sig. (2-tailed)  Pearson correlation r  Sig. (2-tailed)     

 B2  0.171  0.376  −0.070  0.718  0.068  0.726   
 B3  0.999  < 0.001  0.674  < 0.001  0.859  < 0.001   
 B4  0.445  0.016  0.604  0.001  0.470  0.01   
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 The question of how many items should be included in a 
memory test also deserves discussion. The data we presented on 
some of our outliers suggest that the 16 items used with the 
CVLT-II might be not enough for some participants, because 
they can learn more items. Our analysis suggests that an initial 
set of 16 items may suffi ce for most subjects, but that larger sets, 
for example, 20 or even 30 items, might be needed for some 
subjects. For example, an initial set could consist of 16 items, an 
intermediate set of 20 items and advanced set of 30 items. In 
other words, a precise assessment of the learning curve param-
eters needs a memory test specially adapted for this purpose. 

 We hypothesize that B3 refl ects mainly working memory 
and to a lesser degree hippocampal effects. On the other hand, 
B4 predominantly refl ects hippocampal capacity. The positive 
correlation between B3 and B4 may refl ect the hippocampal 
contribution to each. At this point in our model construction 
the meaning of B2 is diffi cult to say defi nitely. We believe that 
on the whole B2 refl ects the rate of information transfer from 
working memory to the hippocampus and the rate at which 
the hippocampus can encode new episodic memories. 

 Our suggestions of the underlying physiological processes 
associated with our coeffi cients receive some support in the 
literature. It is recognized that the formation of new episodic 
memory consists of working memory processes and hippo-
campal processes (Ericsson & Kintsch,  1995 ; Squire & 
Schacter,  2002 ; Tulving,  2002 ). In an fMRI study, the brain 
regions activated most extensively in an episodic memory 
task (repetitive learning and free recall of abstract geometric 
patterns) included the parahippocampal gyrus bilaterally, the 
hippocampus bilaterally, the middle and the inferior tempo-
ral gyrus bilaterally (Grön, Bittner, Schmitz, Wunderlich, & 
Riepe,  2002 ). Some authors suggest that working memory 
depends on persistent activity in distributed regions of neo-
cortex, including frontal, lateral temporal, and parietal cor-
tical areas that are known to be important in the perception 
and initial processing of new information (Fuster,  2003 ; Postle, 
 2006 ; Shrager, Levy, Hopkins, & Squire,  2008 ). 

 That values of R squared are rather low in some normal 
participants should attract interest. We suggest that poor 
concentration of a participant during the CVLT-II test is one 
of the main factors infl uencing the relationship between ex-
perimental and model values, although other factors may be 
at work. We, therefore, hypothesize that deviations of the 
performance of individual participants from the model con-
stitute an interesting research question. We will study this 
question in future experiments, especially in participants 
suffering from memory defi cits. 

 One way to equate attentional factors is to administer an 
attention test before participants receive the CVLT-II memory 
test. Several attention tests are available, for example, the 
Connor’s continuous performance test (Conners & MHS 
Staff,  2000 ) or T.O.V.A.—test of variables of attention 
(Leark, Greenberg, Kindschi, Dupuy, & Hughes,  2007 ). 
Administering an attention test may have the dual benefi t of 
assessing brain attention mechanisms and mobilizing the 
participant to concentrate his/her attention on the subsequent 
CVLT-II memory test.     
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