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Previous studies have shown that acute psychosocial stress impairs retrieval of declarative memory with
emotional material being especially sensitive to this effect. A functional deletion variant of the ADRA2B
gene encoding the a2B-adrenergic receptor has been shown to increase emotional memory and neural
activity in the amygdala. We investigated the effects of acute psychosocial stress and the ADRA2B allele
on recognition memory for emotional and neutral faces. Fourty-two healthy, non-smoker male volun-
teers (30 deletion carriers, 12 noncarriers) were tested with a face recognition paradigm. During encoding
they were presented with emotional and neutral faces. One hour later, participants underwent either a
stress (‘‘Trier Social Stress Test (TSST)’’) or a control procedure which was followed immediately by
the retrieval session where subjects had to indicate whether the presented face was old or new. Stress
increased salivary cortisol concentrations, blood pressure and pulse and impaired recognition memory
for faces independent of emotional valence and genotype. Participants showed generally slower reaction
times to emotional faces. Carriers of the ADRA2B functional deletion variant showed an impaired recog-
nition and slower retrieval of neutral faces under stress. Further, they were significantly slower in retriev-
ing fearful faces in the control condition. The findings indicate that a genetic variation of the
noradrenergic system may preserve emotional faces from stress-induced memory impairments seen
for neutral faces and heighten reactivity to emotional stimuli under control conditions.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Acute psychosocial stress triggers a fast response inducing the
release of noradrenaline and a slow response inducing the release
of glucocorticoids. In humans, it has been shown that elevated lev-
els of glucocorticoids impact on a variety of cognitive functions,
especially learning and memory (reviewed in (Lupien, Maheu, Tu,
Fiocco, & Schramek, 2007)). This influence depends critically on
the timing of the stressor relative to the memory phase (Schwabe,
Wolf, & Oitzl, 2010). Acute stress or administration of stress hor-
mones before memory encoding improves later retrieval while
administration of stress or stress hormones before retrieval often
impairs performance (reviewed in (Wolf, 2008).

For example, rats showed impaired spatial long-term memory
when receiving a footshock prior to retention. This stress induced
deficit could be abolished by blocking corticosterone synthesis
(de Quervain, Roozendaal, & McGaugh, 1998). In humans, several
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studies provide evidence for impairments of memory when the
stressor is applied prior to retrieval (Kuhlmann, Piel, & Wolf,
2005; Tollenaar, Elzinga, Spinhoven, & Everaerd, 2008). Impair-
ments were mainly demonstrated in tasks using verbal material
and free recall (Buchanan, Tranel, & Adolphs, 2006; Smeets, Otgaar,
Candel, & Wolf, 2008). The stress-induced impairments are in line
with the finding that pharmacological enhancement of glucocorti-
coid levels prior to retrieval reduced cued recall of word pairs
learned 24 h earlier and decreased neural activity in the medial
temporal lobe (de Quervain et al., 2003).

Emotional memory is especially prone to acute psychosocial
stress. In humans, emotional memory has often been studied by
using emotional and neutral verbal material which volunteers
had to recall 24 h later. Using such an approach, Kuhlmann et al.
(2005) and Smeets et al. (2008) Smeets (2011) provide evidence
that the stress induced impairment of verbal memory retrieval is
stronger for emotional than for neutral words. Stress induced
memory impairments are however also evident with shorter de-
lays between encoding and retrieval. Buchanan and colleagues
found stress-induced impairments in free recall of moderately
arousing words 1 h after encoding. Similar impairments were re-
ported by Merz et al. for socially relevant information (Buchanan
et al., 2006; Merz, Wolf, & Hennig, 2010).
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Several studies investigated the interaction between glucocorti-
coids and noradrenaline with respect to encoding of emotional
memories. These findings suggest that an interaction of these
two endogenous modulators impacts on neural activity in hippo-
campus and amygdala, increasing memory for emotional items
(Kukolja, Klingmuller, Maier, Fink, & Hurlemann, 2011; van Stege-
ren, Roozendaal, Kindt, Wolf, & Joels, 2010). Whether changes in
noradrenergic activity also impact on retrieval of emotional mem-
ories is less well understood. While some studies, like (Tollenaar,
Elzinga, Spinhoven, & Everaerd, 2009) did not find any evidence
for impaired memory after blockade of noradrenergic activity with
propanolol prior to retrieval, others found that the drug reduced
retrieval of emotional material, an effect which was still evident
24 h later in the absence of the drug (Kroes, Strange, & Dolan,
2010). De Quervain, Aerni, and Roozendaal (2007) and de Quervain
et al. (2007) further investigated the interaction of propranolol
administration and acute stress on recall of emotionally arousing
words. They found that noradrenergic blockade alone did not affect
recall of emotional or neutral words, but prevented the impair-
ment of emotional memory induced by cortisone treatment.

Additional evidence for a role of noradrenaline in emotional
memory comes from genetic studies. A functional deletion variant
of the ADRA2B gene which is characterised by a loss of three glu-
tamic acid residues (301–303) in the third intracellular loop encod-
ing the a2B subunit of the noradrenaline receptor, acts as a loss-of-
function variant and increases noradrenaline availability. Behav-
iorally it has been shown that deletion carriers have enhanced
memory for emotional pictures and it was suggested that this ef-
fect is due to an emotional arousal-induced activation of noradren-
ergic neurotransmission (de Quervain, Aerni, et al., 2007; de
Quervain, Kolassa, et al., 2007). fMRI data suggest that deletion car-
riers exhibit increased neural activity in the amygdala during
encoding of emotional pictures (Rasch et al., 2009). Further, acute
stress induced by showing short movie clips with highly aversive
content, increased phasic amygdala responses to dynamically
morphing emotional faces in deletion carriers but not in non-carri-
ers. This suggests that stress modulates amygdala processing in a
genotype specific way (Cousijn et al., 2010). However, whether
acute stress shows different effects on emotional memory as a
function of ADRA2B receptor polymorphism is still unknown.

The present study aimed to investigate whether acute psycho-
social stress differentially impacts on recognition of neutral and
emotional material as a function of ADRA2B genotype. Participants
performed a recognition memory task for neutral and negative
emotional faces and were exposed to the Trier Social Stress Test
(TSST) (Kirschbaum, Pirke, & Hellhammer, 1993) prior to memory
retrieval. We expected to find impaired memory retrieval after
stress, especially with respect to emotional faces. Further, we ex-
pected a genotype specific modulation of memory retrieval.
2. Materials and methods

2.1. Participants

Forty-five young, healthy men between 18 and 30 years of age
(23.63 ± 0.44) and a body mass index between 18 and 25 partici-
pated in this study. None of them suffered from any acute or
chronic disease or took medication. The study was approved by
the ethics committee of the University of Oldenburg, and subjects
provided written informed consent. Data of one participant were
excluded because of a high number of missed responses (50%
missed), and data of two participants were excluded due to techni-
cal failure. Of the remaining 42 subjects, 21 subjects were hetero-
zygous and 9 subjects were homozygous carriers of the deletion
variant of ADRA2B. 12 subjects did not carry the deletion variant.
As in related studies (Cousijn et al., 2010; Rasch et al., 2009), we
treated homozygote and heterozygote carriers of the deletion var-
iant of ADRA2B (n = 30) as one group (deletion carriers).

2.2. Design and procedure

We combined a standardised psychosocial stress protocol with
a face recognition memory task which consisted of an encoding
and retrieval phase separated by 75 min (including a 60-min-break
and a 15-min psychosocial stress test). Due to the high difficulty le-
vel of the task we refrained from a longer delay between encoding
and retrieval. Stress or a respective control procedure was applied
in a within subject cross over design prior to retrieval. Stress and
control sessions were separated by approx. 1 week. Testing took
place between 8:30 a.m. and 2:30 p.m. Behavioural, physiological
and subjective data were collected in order to measure stress ef-
fects and potential stress by genotype interactions.

2.3. Psychosocial stress

We used the Trier Social Stress Test (TSST) (Kirschbaum et al.,
1993), which is a standardised and well established treatment to
induce psychosocial stress in a laboratory setting. After an antici-
patory preparation period, participants had to perform a free
speech in front of a committee (fictitious job interview), followed
by a mental arithmetic task (counting backwards from 2043 in
steps of 17). Each of the three periods lasted 5 min whilst partici-
pants were video and voice recorded for potential post-analysis.
This protocol is a combination of social-evaluative threat and an
uncontrollable situation, which is consistently associated with a
significant cortisol increase in saliva and blood (Dickerson & Kem-
eny, 2004). The uncontrollable and evaluative aspects were omit-
ted in the control condition, where participants had to perform a
free speech (about a recently experienced motion picture or book)
and an easy mental arithmetic task (counting forwards from zero
in steps of 15) in an empty room without committee and recording
(description of the placebo TSST see (Het, Rohleder, Schoofs, Kirs-
chbaum, & Wolf, 2009)).

2.4. Face recognition memory task

We used a face recognition memory task since emotional faces
strongly activate the amygdala (Dolcos, LaBar, & Cabeza, 2005) and
since neutral and emotional stimuli are well comparable in terms
of visual input.

2.4.1. Face databases and preparation
Neutral and emotional faces were selected from several dat-

abases such as KDEF (Lundqvist, Flykt, & Oehman, 1998), Nimstim
(Tottenham et al., 2009), 2D facial emotional stimuli (Gur et al.,
2002), Ekman (Ekman & Friesen, 1976), MITCBCL face recognition
database (Weyrauch et al., 2004), PICS and Essex face database
(see acknowledgement). The hair was removed and faces were
converted to grey scale and a size of 85 (width) � 127 (height) pix-
els with Corel DRAW Graphics Suite 12. All faces were presented
on a grey background. Even though faces were already classified
in the databases used we performed another rating of the final
set of faces used in this study by a separate set of volunteers. Rat-
ings were made according to type of emotion (fear, disgust, neu-
tral, other) and emotional expressiveness (rated from 1 to 4)
according to (Goeleven, Raedt, Leyman, & Verschuere, 2008, Treese,
Brinkmann, & Johansson, 2003). Emotional faces were rated on
average by 53.57% of volunteers as fearful, 32.86% of volunteers
as disgust, 13.57% of volunteers as showing another negative emo-
tion. On average, 63.5% of volunteers rated the faces as showing a
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strong emotional expression. Neutral faces were rated by all of vol-
unteers as neutral.

2.4.2. Memory task paradigm
During encoding, participants were presented randomly with

100 faces with either emotional or neutral expression (half emo-
tional and half neutral). Each face was displayed for 2 s, with an in-
ter-stimulus-interval (ISI) from 2 to 12 s. Participants had to press
one of two buttons to indicate the gender of the displayed face.
One hour after encoding, participants were exposed to either the
TSST or the control condition which was followed by the retrieval
phase. During retrieval, participants were presented randomly
with 150 emotional and neutral faces: 100 faces from the encoding
session (old) and 50 new faces (again half emotional and half neu-
tral). Each face was displayed for 2.5 s, with an ISI of 2–12 s. Sub-
jects had to indicate whether the displayed face was an old face
or a new face, by pressing the corresponding button. Participants
were instructed and trained prior to the task. Training consisted
of an encoding-training session with 15 faces and a retrieval-train-
ing session with 25 faces, which were not used in the experiment.
The paradigm was piloted in a separate set of volunteers (n = 20)
involving remember/know judgments to investigate whether the
recognition of faces is primarily based on recollection or familiarity
(Rajaram, 1993). From all faces correctly identified as old, 62.7%
obtained a remember response whereas 37.3% obtained a know re-
sponse. Remember responses were faster than know responses
(mean ± SEM 1526 ± 48 ms and 2142 ± 76 ms respectively). Since
several subjects reported difficulties in deciding whether they
remember or know a face, remember/know judgments were not
used in the experiment.

2.5. Physiological and subjective measures

Salivary concentrations of free cortisol, blood pressure, pulse
and subjective mood ratings were collected at four time points:
(i) prior to the encoding phase, (ii) prior to the start of the TSST/
control condition, (iii) directly afterwards and (iv), after comple-
tion of the retrieval session (i.e., approx. 40 min after TSST). Saliva
was collected using Salivette collection devices (Sarstedt AG & Co.,
Nümbrecht, Germany), which were stored afterwards at �20 �C
until biochemical analysis. Biochemical analysis was performed
by the lab of Prof. Dr. C. Kirschbaum, Dresden, Germany. Salivary
levels of free cortisol were measured using a luminescenceimmu-
noassay (IBL GmbH, Hamburg, Germany). Inter- and intra-assay
variations were below 15%. Affective responses were assessed with
the German version of the Multidimensional Mood State Question-
naire (MDBF) (Steyer et al., 1997) after collection of saliva samples.
The questionnaire consists of 24 items with a five-point rating
scale each. These 24 items rely on three underlying dimensions:
good mood-bad mood, alertness-tiredness, calmness-nervousness.

2.6. Genotyping

DNA was extracted from oral epithelium cells according to
(Walsh, Metzger, & Higuchi, 1991). Genotyping was performed
according to (Rasch et al., 2009) by the ‘Institut für Polymorphis-
mus- und Mutationsanalytik’, Homburg, Germany.

2.7. Statistical analysis

Accuracy and median reaction times were calculated for each
trial type and condition in each subject. Responses were classified
as hits (old face presented and correctly recognised as old), correct
rejections (new face presented and correctly recognised as new),
false alarms (new face presented and erroneously identified as
old) and misses (old face presented and not recognised). We fo-
cused our statistical analysis on four measures: (i) hit rate and
(ii) reaction time (RT) for hits and two measures of classical signal
detection theory, (iii) d-prime (d0) and (iv) response bias (criterion
c). Data were analysed with two repeated measures ANOVAs. The
first ANOVA tested for genotype independent effects as a function
of the within-subject-factors condition (stress/control) and emo-
tion (emotional/neutral). The second ANOVA tested for genotype
specific effects using three factors: the within-subject-factors con-
dition and emotion and the between-subject-factor genotype
(ADRA2B deletion carriers/non-carriers). Since a significant geno-
type effect on blood pressure during retrieval was found, we in-
cluded systolic blood pressure changes (BPstress(after retrieval –
after TSST) – BPcontrol(after retrieval – after TSST)) as a covariate
into our analyses. Note that results were not different when the
covariate was not entered into the analysis. Significant effects were
followed by post-hoc t-tests (paired t-tests for comparison be-
tween control and stress condition, unpaired t-tests for compari-
son between genotypes). Physiological and mood effects were
analysed with either paired-samples t-test (independent of geno-
type), or repeated measures ANOVA with the factor time point
(prior to TSST, after TSST and after scanning), condition (stress/con-
trol) and genotype (carrier/non-carrier). All statistical analyses
were performed using SPSS 18.0 (SPSS GmbH, Munich, Germany).
3. Results

3.1. Genotype independent effects of psychosocial stress

3.1.1. Physiological and mood effects
Strong responses to acute psychosocial stress as implemented

by the TSST were evident in cortisol and cardiovascular measures
as well as in mood ratings (Fig. 1). A within group comparison after
TSST or the respective control treatment revealed significantly
higher salivary cortisol concentrations in the stress as compared
to the control group (t(41) = 7.13, p < 0.001). Blood pressure and
pulse were significantly increased after the TSST (systolic pressure:
t(41) = 3.31, p < 0.01; diastolic pressure: t(41) = 2.51, p < 0.05;
pulse: t(41) = 2.54, p < 0.05).

After TSST treatment, subjects reported decreased mood (good–
bad mood scale: stress: 28.07 ± 0.85, control: 33.86 ± 0.67,
t(41) = �6.04, p < 0.001) and increased nervousness (calm-nervous
scale: stress: 24.40 ± 0.93, control: 31.86 ± 0.62, t(41) = �8.15,
p < 0.001). No significant differences were found for alertness
(alert-tired scale: stress: 29.95 ± 0.81, control: 29.88 ± 0.81,
t(41) = 0.09, p = 0.932).
3.1.2. Face recognition memory
We first tested whether psychosocial stress prior to retrieval

impacts on face recognition memory independent of genotype.
We found a significantly reduced sensitivity of face recognition
memory under stress (main effect of condition F(1,40) = 4.66,
p = 0.038, see Fig. 2A). There was a tendency for reduced hit rates
under stress (F(1,40) = 3.91, p = 0.055, see Fig. 2B). D-prime values
and hit rates did neither show a main effect of emotion
(F(1,40) = 0.016, p = 0.901 and F(1,40) = 0.107, p = 0.745 respec-
tively) nor a condition by emotion interaction (F(1,40) = 0.097,
p = 0.757 and F(1,40) = 0.574, p = 0.453 respectively). In other
words, we found a stress-induced impairment of face recognition
which was similar for neutral and emotional faces. Note that the
response criterion c was not significantly modulated by stress or
emotion (F(1,35) = 0.164, p = 0.688; F(1,35) = 0.288, p = 0.595; data
not shown).

Reaction time analysis revealed a main effect of emotion with
slower RTs to correctly remembered emotional faces as compared
to neutral faces (F(1,40) = 7.06, p = 0.011, see Fig. 2C). There was



Fig. 1. Effects of psychosocial stress on salivary cortisol concentrations (A), blood pressure (B) and pulse (C) after the stress and control procedure. (Mean and SEM,
�0.01 < p 6 0.05; ��0.001 < p 6 0.01; ���p 6 0.001).

Fig. 2. Genotype independent effects of acute psychosocial stress on face recognition memory (mean and SEM). A. Effects on sensitivity (d-prime). Stress prior to retrieval
impaired accuracy for both emotional and neutral faces (�ANOVA p < 0.05). B. Effects on hit rate. C. Effects on speed of face recognition memory. Retrieval of emotional faces
took longer than retrieval of neutral faces (significant main effect of emotion) which was primarily evident in the control condition (�t-test p < 0.05), the condition by emotion
interaction was however not significant.
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neither a main effect of condition (F(1,40) = 0.112, p = 0.740) nor a
condition by emotion interaction (F(1,40) = 1.053, p = 0.311). How-
ever, post-hoc t-tests revealed that the slower reaction times in
retrieving emotional faces were primarily evident in the control
condition (t(41) = 2.06, p = 0.046), but not in the stress condition
(t(41) = 0.983, p = 0.332).
Fig. 3. Systolic blood pressure as a function of time, condition and genotype. Non-
carriers of the ADRA2B deletion show a prolonged cardiovascular response to stress
(���t-test p < .001).
3.2. Effects of psychosocial stress as a function of ADRA2B genotype

3.2.1. Physiological and mood effects
There was no significant difference in cortisol concentrations or

mood ratings as a function of ADRA2B genotype. However, stress-
induced cardiovascular effects differed as a function of genotype
(see Fig. 3). While increases of systolic blood pressure were ob-
served in both genotypes after TSST, non-carriers showed pro-
longed cardiovascular responsivity with elevated blood pressure
values even after 40 min after the start of the TSST (time by condi-
tion by genotype interaction: F(1,40) = 5.70, p < 0.05; post-hoc t-
test (t(40) = �3.43, p 6 0.001).
3.2.2. Face recognition memory
In a second step, we analysed the effects of stress on face recog-

nition memory as a function of genotype. The stress induced reduc-
tion of d-prime values shown above was not modulated by ADRA2B



Fig. 4. Effects of acute psychosocial stress on face recognition memory as a function of ADRA2B genotype (mean and SEM). A. Effects on sensitivity (d-prime). Sensitivity of
face recognition memory did not reveal any genotype effects. B. Effects on hit rate. In deletion carriers, hit rate was significantly impaired for neutral faces in the stress
condition. C. Effects on speed of face recognition memory. RT data revealed a significant genotype by condition by emotion interaction. Deletion carriers showed a slower
reaction time to emotional faces under control conditions which was not observed under stress or in non-carriers under control conditions (�t-test p < 0.05, ��t-test p < 0.01).
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genotype (main effect of genotype F(1,34) = 0.001, p = 0.982; geno-
type by condition interaction F(1,34) = 2.465, p = 0.125; genotype
by emotion interaction (F(1,34) = 0.635, p = 0.431; genotype by
condition by emotion interaction F(1,34) = 0.091, p = 0.765, see
Fig. 4A). There was also no significant genotype-dependent effect
on hit rate (main effect of genotype F(1,39) = 0.988, p = 0.326;
genotype by condition interaction F(1,39) = 0.273, p = 0.605; geno-
type by emotion interaction (F(1,39) = 0.162, p = 0.689; genotype
by condition by emotion interaction F(1,39) = 0.345, p = 0.560).
However, post-hoc t-test showed a decreased hit rate for neutral
faces under stress as compared to control in deletion carriers
(t(29) = �2.28, p = 0.030). Non-carriers showed no significant dif-
ferences in hit rate for neutral faces under stress as compared to
control (t(11) = �0.110, p = 0.914). Note that the response criterion
c was not modulated by genotype (data not shown).

Analysis of reaction time data revealed a genotype by condition
by emotion interaction (F(1,39) = 7.429, p = 0.010 see Fig. 4C), no
other interactions or main effects were significant (main effect of
genotype F(1,39) = 1.395, p = 0.245; genotype by condition interac-
tion F(1,39) = 2.177, p = 0.148; genotype by emotion interaction
(F(1,39) = 0.003, p = 0.960). Post hoc t-tests revealed that ADRA2B
deletion carriers showed slower RTs to emotional faces in the
control condition (t(29) = 2.92, p = 0.007). This effect was abolished
under stress, due to an increase of RTs to neutral faces, which
showed a trend for significance (t(29) = 1.98, p = 0.058 compared
against control and t(40) = 1.97, p = 0.055 compared against non-
carriers). In contrast, non-carriers did not yield differential reaction
times to emotional or neutral faces in the control condition but
showed higher reaction times to emotional as compared to neutral
faces under stress (t(11) = 2.55, p = 0.027). This was due to slower
RTs to neutral faces under stress which showed a trend for signif-
icance (t(11) = �1.91, p = 0.082).
4. Discussion

We provide evidence that acute psychosocial stress impairs rec-
ognition memory for faces. Further, we show that a deletion vari-
ant of the gene coding the a2B adreonoreceptor reduces hits to
neutral faces under stress, an effect which was not present in
non-deletion carriers. Reaction time data supports this evidence
by showing a trend for slower retrieval of neutral faces under
stress in deletion carriers. Hence, in deletion carriers emotional
faces may be preserved from stress-induced memory impairments
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seen for neutral faces. Additional genotype-specific effects were
found in the control condition. Here, reaction time data provides
evidence for slower retrieval of emotional faces in deletion carriers.

4.1. Genotype independent effects

The significant effect of psychosocial stress on salivary cortisol
and subjective mood ratings replicates results of many prior studies
and confirms that the employed psychosocial stress protocol (TSST)
successfully induced a neuroendocrine and subjective stress re-
sponse (Dickerson & Kemeny, 2004). Our behavioural results are
in line with previous evidence showing impairments in memory
performance when stress is applied prior to retrieval (Cousijn
et al., 2010; Dolcos et al., 2005; Kuhlmann et al., 2005; Merz et al.,
2010; Smeets, Jelicic, & Merckelbach, 2006). While previous studies
used words, pictures, movie clips or socially relevant information as
stimuli, we here provide first evidence that psychosocial stress also
impacts on recognition of faces. This finding may be of relevance for
eyewitness testimonies and suggests that post-crime interrogations
should avoid psychosocial stress (Morgan et al., 2007).

In contrast to studies using words or pictures, we could not rep-
licate the often found enhanced memory for emotional items, nor a
recognition bias (Buchanan, 2007; Maratos, Allan, & Rugg, 2000;
Windmann & Kutas, 2001). Further, we did not find any evidence
for an emotion specific stress-induced impairment in recognition
memory. Rather, stress-induced decreases in recognition memory
were present for both, neutral and emotional faces. There are only
few studies which used face stimuli to investigate the effects of
emotional valence on recognition memory. One study reported in-
creased recognition of negative emotional faces (Keightley, Chiew,
Anderson, & Grady, 2011), while others were unable to find emo-
tional effects on accuracy measures of face recognition (Johansson,
Mecklinger, & Treese, 2004) or even found an impairment (Harvey,
Bodnar, Sergerie, Armony, & Lepage, 2009; Sergerie, Lepage, & Ar-
mony, 2007).

There are several reasons for the much weaker effect of emotion
on recognition memory for faces. First, retrieval of faces is more
difficult than retrieval of objects or words and it has been sug-
gested that different brain areas and cognitive processes contribute
to retrieval of faces as compared to words (Galli & Otten, 2011).
Second, in face memory paradigms, memory retrieval is tested
using measures of recognition rather than free recall. While free re-
call relies on recollection, recognition memory consists of two dis-
tinct processes, recollection and familiarity, the latter being less
modulated by emotion (Kensinger & Corkin, 2003). Kuhlmann
et al. (2005) suggested that stress effects on free recall are some-
times stronger than on cued recall, which is supported by findings
of Merz et al. (2010), who observed significant impairments after
stress for both recognition and free recall, but with stronger effects
on free recall. In contrast, cortisone administration was found to
impact only on measures of free recall but not recognition (de
Quervain, Roozendaal, Nitsch, McGaugh, & Hock, 2000).

Another factor which may have contributed to the lack of emo-
tional modulation of recognition memory and the lack of an emo-
tion by stress interaction is the rather short delay between
encoding and retrieval. Most studies showing stress-induced
impairments in memory retrieval, which were specific to emo-
tional material, used delays of 24 h or longer in order to reliably
separate retrieval from consolidation processes (Kuhlmann et al.,
2005; Quesada, Wiemers, Schoofs, & Wolf, 2012; Smeets, 2011;
Tollenaar et al., 2008). However even studies with short delays be-
tween encoding and retrieval found memory impairments (Merz
et al., Buchanan et al.). A first fMRI study on stress and memory re-
trieval also reported reduced hippocampal activity during the re-
trieval of material learned 1 h prior to cortisol application
(Oei et al., 2007). In contrast, improvements of memory retrieval
for emotional items are seen when stress or stress hormones are
applied before or immediately after encoding, thus affecting con-
solidation (Cahill & Alkire, 2003; Kuhlmann & Wolf, 2006). Payne
and colleagues (Payne et al., 2007) were able to show that the ben-
eficial effects of stress prior to encoding were specific to emotional
items, recall of neutral items was even impaired. We cannot ex-
clude that our stress intervention, which was applied 1 h after
encoding affected both, consolidation and retrieval. However, since
we found impairments rather than improvements of memory, and
since some prior studies also used short intervals, we think that a
stronger action on retrieval processes is more likely.

Although facial emotion did not modulate accuracy measures,
correct recognition of emotional faces took longer than recognition
of neutral faces, an effect which was also found, at least numeri-
cally, in other studies using face stimuli (Johansson et al., 2004;
Keightley et al., 2011; Sergerie et al., 2007). The effect was espe-
cially prominent in the control condition and numerically reduced
under stress. In contrast to accuracy-related measures, reaction
times are continuous response measures which may be more sensi-
tive than categorical response measures (Jou, Matus, Aldridge, Rog-
ers, & Zimmerman, 2004). Reaction time measures have been used
previously in memory paradigms and were shown to correlate with
confidence ratings (Jou et al., 2004; Ratcliff & Murdock, 1976). Fas-
ter reaction times thus may reflect the greater ease to retrieve
memories with stronger representations. However, with respect
to emotional material, a second process could influence reaction
times. (Williams, Moss, Bradshaw, & Mattingley, 2005) have shown
that visual search times to fearful faces are slower than to other
emotional faces and speculate that fearful faces signal a potential
threat in the environment, which directs attention away. Since we
did not find any significant differences in accuracy measures for re-
trieval of emotional vs. neutral faces, we suggest that the significant
increase in reaction times to emotional faces found here and by oth-
ers could be explained by this second process which may be related
to shifting attention away from the presented face.

4.2. Genotype dependent effects

Psychopharmacological studies provide evidence that nor-
adrenaline interacts with other neurotransmitters, neuromodula-
tors and stress hormones (Wust et al., 2004) in the amygdala and
hippocampus to enhance long-term memory consolidation
(McGaugh & Roozendaal, 2009), especially for emotional events
(Cahill, Prins, Weber, & McGaugh, 1994). Furthermore, the norad-
renergic system is also necessary for retrieval of recent memory
(Murchison et al., 2004), and the coordinated action of noradrener-
gic neurons in locus coeruleus and amygdala activates forebrain
fronto-hippocampal networks that are essential for memory retrie-
val (Sara, 2009; Sterpenich et al., 2006). Blocking noradrenergic
activity with the b-adrenergic receptor antagonist propranolol
abolished the declarative memory enhancement for emotional
items, an effect which was still found on the following days, in
the absence of the drug (Kroes et al., 2010). Studies investigating
the interaction of propranolol and stress reported that propranolol
alone did neither affect recall of emotional nor neutral words, but
blocked the psychosocial stress-induced memory enhancement for
emotional words (Schwabe et al., 2009) and a cortisone-induced
impairment of recalling emotionally arousing words (de Quervain,
Aerni, et al., 2007; de Quervain, Kolassa, et al., 2007). A similar re-
sult was also reported with regard to long-term spatial memory re-
trieval in rats (Roozendaal, Hahn, Nathan, de Quervain, &
McGaugh, 2004). Thus, there is ample of evidence that the norad-
renergic system modulates effects of stress on emotional memory
and it is reasonable to assume that a genetic variation which
impacts on noradrenergic neurotransmission may affect stress-in-
duced effects on emotional memory.
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Human genetic studies provide evidence that a genetic varia-
tion of noradrenergic neurotransmission, the ADRA2B deletion, en-
hances emotional memory, both for negative and positive scenes
(de Quervain, Aerni, et al., 2007; de Quervain, Kolassa, et al.,
2007). fMRI data suggests that this effect is related to an increased
activation of the amygdala (Rasch et al., 2009) and inferior frontal
gyrus (Urner et al., 2011) during successful emotional memory
encoding in deletion carriers. Note however, that even though this
indicates an effect of ADRA2B genotype on encoding, differences in
noradrenergic neurotransmission are also present at retrieval and
may impact on performance.

In contrast to the results of de Quervain, Aerni, et al. (2007) and
de Quervain, Kolassa, et al. (2007), we did not find any evidence for
enhanced emotional memory in deletion carriers of the ADRA2B
polymorphism which may be due to our much smaller group size
and the different stimulus material used. The ADRA2B deletion
has also been investigated in relation to acute and chronic stress,
irrespective of memory. Cousijn et al. (2010) induced acute stress
via aversive movie clips and provide evidence for stronger phasic
amygdala activity in deletion carriers under stress - even though
stress induced increases in tonic amygdala activity were not mod-
ulated by genotype (Cousijn et al., 2010). Our accuracy data does
not yield strong evidence for genotype specific effects of stress.
The only significant finding was a reduction in hit rate for neutral
items under stress which was found in deletion carriers only. This
co-occurred with a tendency for slower RTs when retrieving neu-
tral items in deletion carriers under stress, which may indicate dif-
ficulties in retrieving neutral memories. Hence, deletion carriers
may be specifically prone to stress induced impairments in retrie-
val of neutral items while emotional items are preserved from
stress induced impairments.

The reaction time data further suggest that deletion carriers
showed a slower reaction to emotional faces under control condi-
tions which was not observed under stress or in non-carriers under
control conditions. If slower reaction times in retrieving emotional
faces are primarily driven by a shift of attention to a potential
threat in the environment, which is signaled by the emotional face,
then our finding suggests an increase in emotional reactivity in
deletion carriers which would be in line with increased amygdala
activations found by Cousijn et al. (2010) and Rasch et al.
(2009)). Individual differences in selective attention to angry faces
which were related to stress-induced cortisol reactivity were re-
ported by Roelofs, Bakvis, Hermans, van Pelt, and van Honk (2007).
4.3. Blood pressure

We found a genotype-dependent effect of stress on blood pres-
sure. Non-carriers of the ADRA2B deletion showed prolonged car-
diovascular responsivity to the stressor. It is known that ADRA2B
is important in the regulation of blood pressure, cardiovascular
function and lipid metabolism, and a study in Chinese men has
shown that ADRA2B non-carriers have higher blood pressure while
studies of Caucasians yielded in consistent results (Zhang et al.,
2005). We here report a relation between ADRA2B genotype and
cardiovascular response to psychosocial stress, which was evident
as prolonged recovery of systolic blood pressure in non-carriers of
the ADRA2B deletion. Note that the initial cardiovascular response
to the stressor was similar in both groups. Increases in systolic
blood pressure and increases in plasma noradrenaline have also
been described after administration of progesterone and naturally
fluctuating progesterone levels were shown to modulate stress in-
duced cortisol responses and emotional memory(Childs, Van Dam,
& de Wit, 2010; Felmingham, Fong, & Bryant, 2012). Altered stress
reactivity might translate into a heightened vulnerability for car-
diovascular and psychiatric disorders in non-carriers.
4.4. Molecular mechanisms

Traditionally effects of stress on emotional memory have been
linked to b adrenergic noradrenaline receptors. A recent animal
study which used both, a pharmacological challenge and a genetic
manipulation, revealed a complex interaction between stress, b
adrenergic noradrenaline receptors and memory retrieval (Schut-
sky, Ouyang, Castelino, Zhang, & Thomas, 2011). Other animal
studies indicate that glucocorticoids regulatea2adrenergic recep-
tors in the brain (Flugge, 1999). The deletion of the a2 adrenergic
receptor encoding gene ADRA2B, which was studied here, has a
pronounced effect on receptor phosphorylation leading to a loss
of agonist-promoted desensitization, which evokes a partial
uncoupling of the receptor from functional interaction with G pro-
teins (Gi/o). Increases in stress hormones after acute psychosocial
stress may thus influence a2 receptors in a genotype specific
way. Although the relationship between a2 receptors and memory
retrieval is unclear, one can assume that a change of a2 receptors
might mediate downstream molecular factors which could interact
with b receptors and therefore suggest that genetic variations in
ADRA2B might change the sensitivity to stress induced physiolog-
ical and behavioural effects.

In summary, our study is the first to show that psychosocial
stress prior to retrieval impairs recognition memory for both neu-
tral and emotional faces. We provide evidence that the deletion
variant of the ADRA2B gene decreases memory recognition for neu-
tral items under stress and increases the speed of retrieving emo-
tional information from memory under control conditions. The
latter finding may indicate an attentional bias to emotional infor-
mation in this group.
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