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Stress causes a neuroendocrine response cascade, leading to the release of catecholamines and

glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR)

and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory process-

ing at the same time as impairing the retrieval of memory of emotionally arousing experiences.

The present selective review addresses four recent developments in this area. First, the role of

the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is

illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs

on different memory processes in humans are summarised. Next, a series of human experiments

on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented.

Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by

the description of patients with anxiety disorders who demonstrate an enhancement of extinc-

tion-based therapies by GC treatment. The review highlights the substantial progress made in

our mechanistic understanding of the memory-modulating properties of GCs, as well as their

clinical potential.
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Introduction

The stress-induced activation of the hypothalamic-pituitary-adrenal

(HPA) axis and the release of glucocorticoid (GC) hormones (cortisol

in humans; corticosterone in rodents) is of crucial importance for

adaptation to stress, in part through their effects on learning and

memory via modulation of mineralocorticoid (MR) and glucocorti-

coid (GR) receptors (1–3). Although the effects of stress on memory

have obvious adaptive value in evolutionary terms in that it is vital

to remember both dangerous and favourable situations (4), in some

circumstances, these influences might underlie memory distortions

in stress-associated mental disorders (5). At the same time, there is

mounting evidence that the memory-modulating properties of

stress hormones might be beneficial for the prevention (6) or treat-

ment of anxiety disorders (see below).

Stress and GCs exert phase-dependent effects on long-term

memory, with enhancing effects on the consolidation of memory

and impairing effects on memory retrieval (7–9). Studies in rodents

have clarified the underlying mechanisms. Stress first results in a

rapid activation of the sympathetic nervous system and the release

of epinephrine from the adrenal medulla, which leads via stimula-

tion of b-adrenoceptors on the vagus nerve to an enhanced release

of norepinephrine in the basolateral complex of the amygdala

(BLA). This initial arousal signal within the BLA interacts with the

delayed GC signal in modulating memory in other brain regions,

such as the hippocampus and neocortex (4). Permanent disruption

of BLA activity, as well as b-adrenoceptor antagonist infusions into
the BLA, abolishes the effects of GCs on memory (2,10). The impact



of stress on learning is further modulated by the emotionality of

the ‘to be learned’ material (8,9) and is additionally influenced by

the context in which learning takes place.

GCs exert their action in the central nervous system via the MR

and the GR. Classically, GCs were considered to act exclusively at

intracellular receptors involving rather slow genomic actions. How-

ever, more recently, evidence for rapid effects of GCs via mem-

brane-bound versions of the MR (11) and GR (see below) has

accumulated. The effects of GCs on memory have been mostly

ascribed to the GR, whereas the effects of the high-affinity MR

have been primarily associated with stress appraisal and respon-

siveness to stressful stimuli (11).

The current brief and selective review provides an overview of

recent developments in several areas. It builds upon a symposium

held at the 45th meeting of the International Society for Psy-

choneuroendocrinology entitled ‘How Stress Influences Emotional

Memories: A Translational Approach’.

First, the role of the endocannabinoid system in mediating the

rapid, nongenomic effects of GCs on memory is illustrated in

rodents. Subsequently, studies on the impact of a selective stimula-

tion of the MR on different memory processes are reviewed. Next,

a series of human experiments on the impact of stress or GC treat-

ment on extinction and reconsolidation of fearful memories is pre-

sented. Finally, the clinical relevance of these findings is highlighted

by the description of several patient studies.

Endocannabinoid mediation of the effects of GCs on
memory

Classically, GCs were assumed to regulate physiology and behaviour

through genomic pathways that involve the activation of intracellu-

lar GRs and subsequent changes in gene transcription (12). How-

ever, accumulating evidence indicates that some effects of GCs

occur in a rapid fashion that is not compatible with the time frame

of genomic actions. Thus, these more rapid effects appear to

involve a nongenomic mechanism mediated by membrane-asso-

ciated GC receptors (12,13). Previous studies have indicated that

emotional arousal induces noradrenergic activation within the BLA

and that GCs rapidly facilitate this noradrenergic activation to

induce memory enhancement, yet the possible mechanism underly-

ing this fast interaction is not well understood (2,14,15). Recently,

the endocannabinoid system, a fast-acting retrograde messenger

system, has emerged as a candidate for regulating the nongenomic

actions of GCs in the brain (16–18). Endocannabinoids such as

anandamide and 2-arachidonoyl glycerol (2-AG) are synthesised on

demand and serve as retrograde messengers at central synapses

(19). Through the activation of cannabinoid type 1 (CB1) receptors

at presynaptic sites, they inhibit ion channel activity and reduce

neurotransmitter release in the brain (20). In a series of experiments

conducted in rats, Atsak et al. (21) examined the role of endo-

cannabinoid signalling within the BLA in mediating the effects of

GCs on noradrenergic function and the consolidation of memory.

In the first experiment, it was found that a selective GR agonist

or membrane-impermeable GC ligand administered into the BLA

immediately after inhibitory avoidance training enhanced long-term

memory of the training. Strikingly, blockade of CB1 receptors in the

BLA prevented the GC-induced memory enhancement. Furthermore,

as expected, systemic post-training injections of a memory-enhan-

cing dose of corticosterone increased neuronal activity within the

BLA, as assessed by the number of cells expressing phosphorylated

cAMP response-element binding (pCREB) protein shortly after the

inhibitory avoidance training. However, a CB1 receptor antagonist

administered systemically together with the corticosterone blocked

the increased pCREB expression in the BLA. These findings demon-

strate that endocannabinoid signalling in the BLA is essential for

mediating the effects of GCs on the enhancement of memory and

BLA activity.

Next, studies investigated whether activation of endocannabi-

noid signalling in the BLA is sufficient to enhance memory con-

solidation per se and whether this cannabinoid effect requires

concurrent noradrenergic activation in the BLA. An activation of

CB1 receptors with the cannabinoid agonist in the BLA induced a

dose-dependent enhancement of inhibitory avoidance memory;

however, co-infusion of the b-adrenoceptor antagonist propranolol
prevented this memory enhancement. Such an enhancement of

memory consolidation by cannabinoid activation is consistent with

the findings of other studies and also occurs in other brain

regions (22). These findings thus indicate that noradrenergic sig-

nalling is required for endocannabinoids to induce memory con-

solidation enhancement.

Further studies investigated whether endocannabinoids regulate

the memory-modulatory effects of GCs via nongenomic influences

on the noradrenergic system within the BLA. A suppression of GR

signalling by administering a specific GR antagonist is known to

reduce the sensitivity of the BLA to the memory-enhancing

effects of noradrenergic stimulation, such that a much higher

dose of the b-adrenoceptor agonist is required to induce memory

enhancement (23). It was assumed that, if the endocannabinoid

system is the primary route through which GCs change the sensi-

tivity of the BLA to noradrenergic activation, then pharmacological

augmentation of cannabinoid activity with an ineffective dose of

the CB1 receptor agonist should compensate for the dose-shift

induced by the blockade of GRs. Indeed, although the low dose

of the CB1 receptor agonist per se was not sufficient to enhance

memory, it completely blocked the effect of the GR antagonist

with respect to reducing the sensitivity of the BLA to clenbuterol.

These findings demonstrate that an enhancement of cannabinoid

signalling totally compensates for the lack of GR activation and

normalises the sensitivity of the BLA to noradrenergic stimulation.

These findings also suggest that endocannabinoid signalling is the

primary pathway through which GCs enhance memory consolida-

tion and increase the sensitivity of BLA neurones to the memory-

enhancing effects of noradrenergic activity. This interpretation is

in accordance with the literature indicating that GCs, possibly

through binding to a membrane-associated receptor, rapidly

induce anandamide release in the amygdala (18,24). Moreover, the

heightened anandamide signalling in the BLA after inhibitory

avoidance learning is required for the optimal enhancement of

memory consolidation (25). Taken together, and as illustrated in

Fig. 1, our working model (21) suggests that GCs, via activation
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of a membrane-bound GR and intracellular pathways, induce the

release of endocannabinoids, possibly anandamide (21). Because

CB1 receptors within the BLA are predominantly found on local

inhibitory GABAergic interneurones (26), GC-induced anandamide

signalling might subsequently suppress GABAergic activity (27)

and thereby disinhibit norepinephrine release and at the same

time increase the excitability of BLA pyramidal neurones. Impor-

tantly, similar interactions between GCs and the endocannabinoid

system have been reported in other brain regions (e.g. the hip-

pocampus) to modulate fear memory consolidation (28) or other

types of memory processes such as memory retrieval. However, in

the latter case, 2-AG appears to have a more prominent role than

anandamide (29,30). These findings have important implications

for our understanding of the essential role of the endocannabi-

noid system in mediating rapid interactions between GCs and the

noradrenergic arousal system.

The impact of MR stimulation on human cognition

Most of the effects of GCs on cognition have been attributed to

GR function but, within the last two decades, more studies have

emphasised the importance of the MR. In healthy individuals, block-

ing the MR typically leads to impaired cognitive performance (31–

33). In addition, evidence from animal studies suggests that

enhancing MR function improves memory performance (34). Based

on this research, we aimed to investigate the effects of MR stimu-

lation on cognition in humans. For this purpose, in a series of pla-

cebo-controlled studies, the effects of fludrocortisone, an MR

agonist, on cognition in healthy individuals, patients with major

depressive disorder (MDD) and patients with borderline personality

disorder (BPD) were investigated (35–37). Of note, alterations of the

HPA axis have been reported for MDD and BPD, including enhanced

cortisol release and a reduced feedback sensitivity of the axis (38).

The latter has been mostly interpreted in terms of disturbed GR

functioning. In MDD, several studies have investigated GR function

directly, whereas less research has been carried out in BPD patients.

There is evidence for diminished GR function in MDD; for example,

increased DNA methylation of the GR gene promoter (39) and

reduced GR mRNA levels (40). There are also studies suggesting

that MR dysfunction might play a role in the context of depression.

For example, the inhibitory effect of fludrocortisone on cortisol

secretion appears to be attenuated in patients with MDD, especially

in individuals with psychotic symptoms (41). In addition, a reduced

MR expression in the hippocampus and prefrontal cortex of MDD

patients has been reported (42,43). Interestingly, there is evidence

that cognitive deficits in psychiatric disorders, especially in MDD,

are associated with alterations of the HPA axis (44). For example,

studies have observed correlations between cortisol hypersecretion

and impaired cognition in MDD (45,46).

In the first study, healthy individuals randomly received 0.4 mg

of fludrocortisone or placebo orally in a double-blind, cross-over

study design, which took place in the afternoon (35). Fludrocorti-

sone improved performance in a wide range of neuropsychological

tests, including visuospatial memory, working memory and verbal

memory. These findings are in line with the hypotheses that MR

activity (along with a moderate GR occupation) might facilitate hip-

pocampal and prefrontal function, and thus enhance cognitive

performance (47,48).

In a second step, studies investigated whether the enhancing

effects of MR stimulation are also seen in psychiatric patients

suffering from MDD and BPD. Again, the above-mentioned placebo-

controlled, cross-over design was used in which fludrocortisone or

placebo was administered in medication-free depressed patients

and age-, sex- and education-matched healthy participants. In

accordance with the literature, patients with MDD had worse cogni-

tive performance compared to healthy individuals. Interestingly,

across groups, test performance was improved for verbal memory

and executive function after fludrocortisone compared to placebo

(36), indicating that both groups appear to profit from MR stimula-

tion.

In a BPD sample, a different pattern of the effects of MR stimu-

lation on cognition was seen. That study compared medication-free
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Fig. 1. The model illustrates the role of the endocannabinoid system in

integrating the effects of glucocorticoids (GCs) and norepinephrine (NE) on

memory consolidation. GCs, released during emotionally arousing situations,

bind to a membrane-bound glucocorticoid receptor (GR), and activate the

intracellular cAMP/protein kinase A (PKA) signalling cascade. This triggers

endocannabinoid, particularly anandamide (AEA), synthesis. Endocannabi-

noids then activate cannabinoid type 1 (CB1) receptors on GABAergic termi-

nals and thereby inhibit GABA release. This subsequently disinhibits NE

release, and increases the excitability of pyramidal neurones within the ba-

solateral complex of the amygdala (BLA). This overall increases the sensitivity

of BLA neurones to NE. Together, these effects result in an increased activa-

tion of the cAMP/PKA pathway and phosphorylation of cAMP response-

element binding (CREB) protein. These stress hormone effects in the BLA are

required for the optimal enhancement of memory for emotionally arousing

experiences. A similar working model might hold true for the hippocampus

but likely involves a different endocannabinoid ligand Adapted from citation

(21).
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female BPD patients with healthy control women. BPD patients

showed an impaired test performance after fludrocortisone treat-

ment compared to placebo but only on hippocampus-mediated ver-

bal memory and visuospatial memory. Working memory, which

depends more on the prefrontal cortex, was improved after MR

stimulation comparable to healthy controls (37). Thus, it appears

that the effects of MR stimulation in BPD differ, depending on the

brain region that is primary being examined with the used tasks.

Possibly, MR function is intact in prefrontal brain areas in concert

with disturbed MR function in limbic areas.

In sum, the reviewed studies have observed (in line with studies

in rodents) that MR stimulation has beneficial effects on cognition.

This was seen for both healthy individuals and depressed patients.

In borderline patients, the findings appear to be more complex and

the effects of MR stimulation appear to be task specific. Future

studies should systematically disentangle the beneficial and adverse

effects of MR stimulation in health and disease. In the studies

reviewed here, fludrocortisone was given orally approximately

90 min before testing. Therefore, it is possible that not only the

fast nongenomic effects of MR stimulation were seen, but also the

slow genomic effects had already kicked in (49). Thus, in future

human studies, it would be important to differentiate genomic from

nongenomic MR effects.

How stress influences fear extinction and fear
reconsolidation

So far, this review has focused on the impact of GCs in enhancing

memories. However, humans and other animals not only have to

acquire new information, but also have to update or unlearn old

information and its associated behaviour when it is no longer rele-

vant or appropriate. This is especially relevant for the treatment of

anxiety disorders where patients have to transform an acquired

association (e.g. a spider is dangerous) into a new safe association

(e.g. a spider is not dangerous). This part of the review describes

human experimental studies testing the impact of stress or GC

treatment on extinction and reconsolidation of fearful memories. It

thus paves the way for the clinical studies described in the final

section of this review.

Classical fear conditioning is a powerful model for studying the

development and treatment of anxiety disorders. The fear memory

trace created initially during acquisition is not erased during extinc-

tion. Rather, extinction leads to a second inhibitory memory trace,

which is dependent on prefrontal brain regions. This inhibitory trace

is considered to be context- and state-dependent, as illustrated by

several recovery phenomena (e.g. renewal, reinstatement, sponta-

neous recovery) (50). Stress, via its impact on the amygdala, the

hippocampus and the prefrontal cortex, can influence memory

extinction and its retrieval (51).

In the case of extinction learning and extinction retrieval, the

highly relevant question arises as to whether stress influences the

original acquisition memory trace or the later developed inhibitory

extinction memory trace (51). Studies in anxiety patients reported

that cortisol enhances the success of exposure-based therapies (see

below) (52). By contrast, clinical observations suggest that stress is

linked to the return of fear in anxiety patients, indicative of a neg-

ative impact of stress on extinction retrieval (53).

A series of human studies tested the impact of acute stress on

extinction retrieval by using a renewal paradigm (54,55). In this

paradigm, participants learn an association in context A. Afterwards,

extinction takes place in another context (B). One day later, extinc-

tion retrieval is tested in both contexts. Typically, the conditioned

response returns more strongly in the initial acquisition context, a

phenomenon termed ABA renewal (56). Two different paradigms

were used: a rather neutral and cognitive predictive learning task

(54) and an emotional fear consolidation task (55). Stress was

induced using the socially evaluated cold pressor task. The results

revealed that stress impaired extinction retrieval in the predictive

learning task but impaired the retrieval of the original fear memory

trace in the fear-conditioning task. The two studies illustrate that

the effect of acute stress on the retrieval of extinction memory

depends among other things on the emotionality of the two mem-

ory traces. The findings are in line with the hypothesis that the

more emotional the memory trace, the more pronounced is the

effect of stress exposure on this trace (57). In patients with anxiety

disorders, the situation might be different because their original

acquisition memory trace is typically substantially older than the

extinction trace and might thus be less influenced by stress (58).

Moreover, the conditioned response often has become habitual and

thus also less sensitive to stress (59).

In a next step, the impact of stress on extinction consolidation

was investigated. Again, the two different learning paradigms were

used. The results revealed that post-extinction stress led to a more

context-dependent extinction memory, which was associated with a

more pronounced renewal effect (60,61). These findings are in line

with rodent studies indicating a critical role for GCs for contextual

fear conditioning (62,63). They suggest that acute stress

directly after extinction learning should be avoided to prevent an

enhanced context dependency of this memory trace. By contrast,

pre-extinction stress made extinction less context-dependent. The

latter findings fit well with the clinical studies discussed later (52).

In sum, these experimental studies in humans illustrate that

stress influences extinction and its retrieval. The effects are phase-

dependent and are further modulated by the emotionality of the

learning material. The findings not only highlight the potential, but

also the risk associated with the occurrence of a stress-induced

HPA response within the context of extinction-based treatment

approaches.

Interference with reconsolidation has been proposed as an

attractive alternative to extinction-based therapies. The use of beta

blockers has been successful in abolishing fear-related memories in

laboratory studies with healthy participants (64). Moreover, initial

evidence suggests that this approach could be effective in the

treatment of patients with specific phobias (65). With respect to

fear conditioning, cortisol given during reactivation of a fear mem-

ory trace leads to a substantial and specific strengthening of the

reconsolidated memory trace. This became apparent during rein-

statement testing 24 h after reconsolidation manipulation (66). This

finding might help to explain the persistence of fear memories in

psychopathology. Moreover, the enhancing effect of cortisol on fear
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memory reconsolidation suggests that GCs should not be used dur-

ing reconsolidation-based therapeutic interventions.

GCs as a treatment or as an adjuvant treatment for
anxiety disorders

GCs enhance the consolidation of new memories (67); on the other

hand, these hormones can reduce the retrieval of information that

has already been stored (8). Moreover, as described above, there is

evidence available to indicate that emotionally arousing information

is especially sensitive to the memory-modulating effects of stress

and GCs (8).

Enhanced consolidation of emotionally arousing information is

an adaptive mechanism that helps us to retain important informa-

tion. Reduced memory retrieval may help to reduce behaviours that

are no more relevant or even maladaptive. This mechanism might

become important in chronic situations when there is a need for

adaptation to a changed environment (e.g. environmental disaster

or war) (8). Under such conditions, the facilitating effects of GCs

on extinction may also support adaptation (68,69).

Because emotionally aversive memories play a crucial role in the

development and symptomatology of anxiety disorders, we aimed

to translate the basic findings to clinical conditions. Specifically, the

results obtained, which indicated that GCs reduce memory retrieval

and enhance the extinction of emotional memories, proposed that

these stress hormones might be helpful in the treatment of anxiety

disorders.

Clinical studies in patients with post-traumatic stress disorder

and phobias (70–72), as well as studies in animal models of

acquired fear (73), indicate that GC treatment indeed reduces the

retrieval of aversive memories and enhances extinction processes.

These dual actions of GCs appear to be especially suited for the

treatment of acquired fear. By inhibiting memory retrieval, GCs may

reduce symptoms related to aversive memories. Furthermore, by

enhancing the consolidation of extinction memory, GCs might facil-

itate the storage of experiences associated with less fear. An illus-

tration of this model is provided in Fig. 2. Therefore, adding GCs to

exposure techniques in extinction-based psychotherapy may be a

promising approach. Indeed, initial evidence indicates that combin-

ing cortisol with exposure therapy increases treatment success in

patients with a fear of heights (52). Similar findings were obtained

in patients with spider phobia (74).

Recently, novel evidence was provided showing that GC adminis-

tration can reduce craving in heroin addicts (75). There is growing

evidence that memory and addiction partly share neural circuitries

and molecular mechanisms (76). Importantly, the powerful incen-

tives associated with drug taking that produce a strong feeling of

craving are stored in memory; also referred to as addiction memory

(77). Thus, GCs may have reduced craving by interfering with the

retrieval of addiction memory (75).

Finally, recent evidence indicates that the effects of stress and

GCs on memory are influenced by genetic variation of the GR

(78,79) and by epigenetic modification of the GR gene promoter

(80,81). These findings may add to the understanding of why some

individuals are more sensitive to the effects of stress than others.

Future research should include large-scale clinical studies evalu-

ating the therapeutic efficacy of GCs in the treatment of anxiety

disorders and addiction and exploring the efficacy of combining GC

treatment with psychotherapy.

Summary and outlook

The present review illustrates that the impact of stress on memory

consolidation is mediated by a rapid activation of endocannabinoid

signalling by GCs during emotionally arousing conditions. Such

(A)

(B)
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Glucocorticoids

Aversive memory

Reconsolidation Retrieval

-Re-experiencing
-Phobic fear

Reconsolidation Retrieval

-Re-experiencing
-Phobic fear
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Aversive memory

2

3
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Consolidation+

Aversive cue
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Fig. 2. Model on the role of glucocorticoids in the reduction of aversive

memory. (A) Excessive retrieval of aversive memories causes re-experiencing

symptoms in post-traumatic stress disorder and phobic fear in phobia.

Reconsolidation of such aversive experiences further cements the aversive

memory trace. (B) Glucocorticoid-induced reduction of the aversive memory

trace. By inhibiting memory retrieval, glucocorticoids partly interrupt this

vicious cycle of retrieving (1), re-experiencing (2) and reconsolidating (3)

aversive memories, which leads to a weakening of the aversive memory

trace (4). Furthermore, because the aversive cue is no longer followed by

the usual aversive memory retrieval and related clinical symptoms, the cue

becomes associated with a non-aversive experience, which is stored as

extinction memory (5). Based on the findings of animal studies, glucocorti-

coids are likely to enhance long-term consolidation of extinction memory.

Reproduced with permission (8).
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findings might carry important implications for maladaptive stress

responses. Changes in GC (82), endocannabinoid (83–85) and cate-

cholaminergic (86) signalling have been repeatedly reported in indi-

viduals after malignant stress exposure, as well as in those at risk

of post-traumatic stress disorder. Thus, these recent findings might

help to enhance our understanding underlying maladaptive stress

responses and also open up new venues for pharmacological inter-

vention targeting the endocannabinoid system.

Mounting evidence is accumulating showing that stimulation of

the MR is beneficial to a range of cognitive and affective tasks. It

remains to be shown which particular cognitive process is mediat-

ing the rather broad beneficial effects observed. Moreover, the pos-

sibility of a differential impact on specific memory phases and/or

an interaction with the emotionality of the learning material needs

to be examined (7,9). The role of intracellular versus membrane-

bound MRs in mediating these effects is currently incompletely

understood (11). Moreover, the interaction with the GR and the

possible cross-talk with the endocannabinoid system described

above remain as future research challenges.

Stress influences extinction and extinction retrieval (51). These

effects are learning-phase dependent and are further modulated by

emotional arousal and context. In addition, cortisol enhances the

reconsolidation of fear memory (66). These findings highlight not

only the potentially beneficial, but also the potentially detrimental

effects of GCs within the context of treatment approaches for anxi-

ety disorders (87).

Finally, work by de Quervain and coworkers has illustrated that

GCs can reduce anxiety and boost extinction-based therapeutic

interventions in patients with anxiety disorders. These effects might

also be helpful for the treatment of addictions. Last but not least,

it has become evident that the impact of stress and stress hor-

mones on memory is modulated by genetic and epigenetic pro-

cesses (80,88).

Taken together, in recent years, substantial progress not only in

our mechanistic understanding, but also in the clinical potential of

the memory-modulating properties of stress hormones has been

made. At the same time findings, obtained in the four areas dis-

cussed in the present review emphasise the need for future studies

addressing the unresolved issues discussed above.
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