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Abstract This chapter presents stress modulation of learning and memory pro-
cesses, focusing on the consolidation (and reconsolidation) of emotional memories
in health and disease. A stressor is any kind of condition, which presents an
environmental demand that exceeds the natural regulatory capacity of the indi-
vidual. A stressor can be of a physical or psychological nature, tangible or mentally
evoked. The subjective state of sensing these possibly adverse conditions is termed
‘stress’ and it leads to the activation of two systems: the sympathetic nervous
system and the hypothalamus-pituitary-adrenal axis. Their end-products of (nor)
adrenaline and glucocorticoids mediate different functions but also work in concert
to promote an adaptive physiological and behavioral response to the challenge.
Stress can either enhance or impair memory, and the timing of the stress relative to
the task plays a major role in determining the direction of these effects. The
adaptive stress response prioritizes consolidation of potentially dangerous events,
therefore while consolidation is enhanced, retrieval is usually impaired. Additional
factors, such as stimulus and context characteristics (e.g. emotionality and arousal),
stress intensity and duration, also play a role. While in several circumstances can
stress hormones lead to strong and persistent maladaptive or traumatic memories,
their memory-enhancing and retrieval-impairing properties also make them
potential adjuvants for treatment, e.g. in extinction-learning based therapies.
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Do you remember when did you first hear about the terror attacks on Tuesday,
September 11th, 2001? Your answer will probably be ‘yes’. You might even
remember exact details of the event, such as the time of day, who you were with
and where, how you felt, what you thought and said. But do you remember what
you had for lunch on Monday, September 10th, 2001, just one day before these
events took place? Your answer will probably be ‘no’. The reason is that not all
memories are created equal. Even years later, stressful events are better remembered
than neutral ones.

This chapter will present the stress response and its mediators. Stress modulation
of learning and memory processes will be discussed, focusing on the consolidation
(and reconsolidation) of emotional memories in health and disease (see also the
chapters by Cunningham and Payne on consolidation of emotional memory, and by
Kessler, Blackwell and Kehyayan on reconsolidation and posttraumatic stress
disorder).

Stress Response

A stressor is any kind of condition, which presents an environmental demand that
exceeds the natural regulatory capacity of the animal, in particular when pre-
dictability and controllability are at stake (Koolhaas et al. 2011). The stressor can be
of a physical or psychological nature, tangible or mentally evoked (Joels and Baram
2009; Joels et al. 2006). It could be the presence of a predator or an aggressive
conspecific, an environmental challenge (e.g. flood, earthquake, forest fire) or, for
humans nowadays, an important exam or a short deadline at work. The subjective
state of sensing these possibly adverse conditions is termed ‘stress’ and it leads to a
complex response, involving a variety of modulators (among them neurotransmit-
ters, peptides and steroid hormones). Different stressors require different responses,
and so the nature of the stressor determines the neuronal populations that perceive a
potential threat as well as the stress mediators involved in the adaptive response
(Joels and Baram 2009). For instance, physical stressors (e.g. cold, blood loss)
recruit the brain stem and hypothalamus (Ulrich-Lai and Herman 2009) while
psychological stressors (e.g. public speech) recruit brain areas that are involved in
emotions (prefrontal cortex (PFC) and amygdala), learning and memory (hip-
pocampus) and decision-making (PFC) (de Kloet et al. 2005). These systems are
not segregated and many stressors (e.g. car accident, rape) combine both physical
and psychological aspects and responses (Joels and Baram 2009).

This chapter will present the two systems involved in the stress response: the
sympathetic nervous system and the hypothalamus-pituitary-adrenal axis (see
Fig. 1). Their end-products of (nor)adrenaline and glucocorticoids and their inter-
actions will be the main focus. The two systems mediate different functions but also
work in concert to promote an adaptive physiological and behavioral response to
the challenge, while suppressing functions that are not of immediate necessity (e.g.
growth and reproduction). As the systems are highly conserved among vertebrates,
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the use of various animal models is rather common and so evidence from animal
and humans studies will be presented interchangeably. For a detailed description of
additional stress mediators, see Joels and Baram (2009).

The Sympathetic Nervous System

The sympathetic nervous system (SNS) is fast to respond when facing a threat. This
system leads to the secretion of (nor)adrenaline (and other monoamines) from the
adrenal medulla. After binding to G-protein coupled receptors in the membrane,
they induce rapid but short lasting changes in the neuronal excitability. In some
cases, secondary gene-mediated effects occur (Joels and Baram 2009), which are
slow in onset but longer lasting. The mostly rapid SNS response promotes physi-
ological (e.g. enhanced metabolism) and behavioral (e.g. increased arousal and
vigilance) strategies that help the animal survive the initial phase of the stressful
event.

Fig. 1 The stress response. The sympathetic nervous system (SNS) and the
hypothalamus-pituitary-adrenal (HPA) axis mediate different functions but also work in concert
to promote an adaptive physiological and behavioral response to stressors. Their end-products are
(nor)adrenaline and cortisol, respectively. Cortisol is also involved in a negative feedback loop,
affecting the HPA axis. ACTH adrenocorticotropic hormone; CRH
corticotrophin-releasing-hormone
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The Hypothalamus-Pituitary-Adrenal Axis

While the SNS response changes neural activity quickly and transiently, the
hypothalamus-pituitary-adrenal (HPA) axis mostly leads to a delayed but
longer-lasting effect. Following the release of corticotrophin-releasing-hormone
(CRH) from the paraventricular nucleus of the hypothalamus, the secretion of
adrenocorticotropic hormone (ACTH) from the pituitary stimulates the adrenal
cortex to release the steroid hormones glucocorticoids (GCs) to the general circu-
lation. GCs (the main GC is cortisol in humans and corticosterone in rodents) are
released in a pulsatile and circadian fashion, with peak concentrations shortly upon
awakening and following stress exposure (Joels and Baram 2009; Kirschbaum and
Hellhammer 1994). The degree of HPA activation after stress exposure depends on
the severity, type and duration of the stressor but also varies between individuals.
Genetic factors, personality traits, life history, age, hormonal and health status all
affect the HPA response (Joels and Baram 2009; Joels et al. 2006; Kirschbaum and
Hellhammer 1994). In addition, the reactivity of the HPA axis differs between
males and females and is also altered during the female menstrual cycle (for a
review on sex differences in HPA axis response, see Kudielka and Kirschbaum
2005; ter Horst et al. 2012). GCs regulate a wide variety of bodily functions that
reinstate the homeostatic control after the temporary disturbance caused by stress.
They play a major role in metabolism, and by mobilizing resources to provide
energy they help to overcome the increased metabolic demand posed by the
challenge. GCs regulate additional systems, such as the immune system, the car-
diovascular system as well as affective and cognitive processes (Kudielka and
Kirschbaum 2005).

GCs are lipophilic, and therefore can easily enter the brain (McEwen et al.
1968), where their actions facilitate behavior adaptation. In the brain, they bind to
two receptor types: Mineralocorticoid (MR) and glucocorticoid (GR) receptors (de
Kloet et al. 1998; Joels et al. 2006). Both receptors are co-localized in the hip-
pocampus, amygdala and PFC (de Kloet et al. 2005; Joels and Baram 2009), brain
areas that have a fundamental role in learning and memory (McGaugh 2000;
Roozendaal 2002). MR are of high affinity, and are mainly present in limbic
structures (Reul and de Kloet 1985). They become occupied and activated at lower
concentrations, and mediate the initial GCs response to stress. For instance, they
modulate appraisal of information and response selection (Lupien and McEwen
1997; Oitzl and de Kloet 1992). The GR, in contrast, are widely present in the brain,
but due to their lower affinity become fully occupied only at times of high hormone
concentration, e.g. at the circadian peak or following stress exposure (Reul and de
Kloet 1985). GR contribute to the HPA negative feedback loop by terminating the
stress response. In addition, they mediate the effects of stress on memory consol-
idation (de Kloet et al. 1998). Until recently, both MR and GR types were thought
to lead to changes through gene expression with a delay of more than one hour.
However, recent evidence has shown that both receptor types can also alter neu-
ronal functions within minutes via non-genomic pathways (Joels et al. 2008; Joels
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and Karst 2012). Membrane-bound MR that reside in the plasma membrane, higher
in affinity than the nuclear variant, were suggested to be involved in the fast
cognitive effects of stress on memory and executive functions (Otte et al. 2015;
Vogel et al. 2015), such as the stress-induced shift from ‘cognitive’ (i.e.
goal-directed) to ‘habit’ (i.e. stimulus-response) memory system (Schwabe and
Wolf 2013). Membrane-bound GR, which regulate the chromatin structure, can
allow transient, but potentially stable, effects on transcriptional processes that
maintain cellular memory (Roozendaal et al. 2010).

The Effects of Stress on Learning and Memory

How does stress affect memory? If you’d think of the example from the beginning
of the chapter (or on any other stressful event you had experienced) you’d probably
say that stress enhances memory. In contrast, you might think about a presentation
you once held in front of your class, in which you were so stressed you could not
remember the answer to an (otherwise simple) question. Indeed, the effects of stress
on memory vary, and it can either enhance or impair memory, depending on the
timing of the stress with regard to the memory task, on stress intensity and duration,
as well as on task-related factors and individual characteristics (Lupien and
McEwen 1997; McGaugh and Roozendaal 2002; Shors 2006; Wolf 2008). For
additional reviews on GCs effects on memory consolidation and retrieval, see
Roozendaal (2002); Wolf (2009).

Stress and Memory Consolidation

The protein-synthesis dependent process of memory consolidation at the cellular
level is thought to be accomplished in the first minutes to hours after encoding
(Dudai 2004; Kandel 2001). During this period, the memory trace can be affected
by a variety of manipulations. Increasing GCs concentrations by stress induction or
pharmacological administration after the learning experience enhances the memory
for the particular event (de Kloet et al. 1999; Joels et al. 2006). This has been
demonstrated in several species for various memory types: for instance, spatial
learning (Oitzl et al. 2001) and passive avoidance (Bohus and de Kloet 1981) in
rodents, and taste aversion in chicks (Sandi and Rose 1994). For example, rats that
were trained in a Morris water maze (a spatial memory task) show elevated cir-
culating GCs concentrations (Oitzl et al. 2001), which are more pronounced when
the water temperature is lower (presumably more stressful for the animal compared
to lukewarm water). This rise in GCs concentrations is positively correlated with a
memory of the platform location in a subsequent test performed one day, or one
week, later (Sandi et al. 1997). Preventing GR activity during water maze learning,
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either pharmacologically in rats (Oitzl and de Kloet 1992) or genetically in mice
(Oitzl et al. 2001) reverses the GCs-mediated performance enhancement.

In humans, post-learning manipulations have demonstrated similar enhancing
effects of stress and GCs on memory consolidation. In a typical design, such as
demonstrated by Preuß and Wolf (2009), participants are presented with a new
learning material (e.g. pictures or words of varying emotional valance).
Immediately after learning (with or without immediate recall test), they are exposed
to either the stress (e.g. psychosocial stress, cold pressor stress) or the control
condition. On the next day, delayed memory recall is tested. While rising the GCs
levels by stress exposure facilitates delayed recall in declarative memory tasks
(Cahill et al. 2003; Preuß and Wolf 2009) inhibiting GCs activity using steroid
synthesis inhibitor during learning of a task impairs the delayed (but not immediate)
recall of the learned material (Lupien et al. 2002). The delayed, but not immediate,
enhancing effect points to a post-encoding enhancement of memory consolidation
by stress and GCs.

Yet not only timing matters. Other task- and stress-related factors play a role in
the consequences of stress on memory consolidation (Joels et al. 2006). Even
though some studies suggested that GCs enhance consolidation independent of
arousal (Abercrombie et al. 2003; Maheu et al. 2004), there is ample evidence
demonstrating that (under the same GCs conditions) emotional or arousing events
tend to be better remembered than neutral ones. This will be discussed next.

Stimulus Emotionality and Arousal

GCs interact with other modulators (noradrenaline in particular) to enhance the
consolidation of emotional and arousing experiences (McGaugh and Roozendaal
2002). In humans, Buchanan and Lovallo (2001) have shown that cortisol treatment
prior to encoding of pictures of different emotionality results in enhanced memory
for the emotional (whether negative or positive) pictures. In a similar manner,
post-learning stress enhances the long-term memory for arousing slides, but not
neutral slides (Cahill et al. 2003), and improves the recall of words, in particular
emotional ones (Smeets et al. 2008). Noradrenergic arousal can be induced not only
by the stimulus itself, but also by the context. For instance, the arousal level in rats
is higher in a novel experimental context but decreases following habituation.
Exposure of non-habituated (i.e. aroused) rats to a stressor enhanced the long-term
memory in a non-aversive task of recognition memory. The effect was opposite
(impaired consolidation) in habituated (non-aroused) rats (Maroun and Akirav
2008).

Roozendaal et al. (2006) demonstrated that noradrenergic activation in the
basolateral amygdala (BLA) is necessary for GCs-induced effects on emotional
memory formation. Unlike GCs, adrenaline does not readily cross the blood-brain
barrier, and a peripheral-central pathway mediates its effects on the amygdala.
Systemic adrenaline activates b-adrenoreceptors on vagal afferents that terminate in
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the nucleus of the solitary tract (NTS). These noradrenergic cell groups project
directly to the amygdala and indirectly to the locus coeruleus, leading to nora-
drenaline secretion. In the BLA, the b-adrenoreceptors directly stimulate cAMP and
cAMP-dependent protein kinase A (PKA). GR potentiate the efficacy of this
pathway, and may also influence it via coupling with a1-adrenoreceptors. In
addition to interacting with the noradrenergic cascade at postsynaptic levels, GCs
alter the levels of available noradrenaline via GR in the noradrenergic cell groups in
the NTS. Administrating b-adrenoreceptor antagonist into the BLA blocks
GCs-mediated memory enhancement (Roozendaal et al. 1996) while post-training
agonists enhance memory consolidation (Liang et al. 1995). Evidence from recent
years has also suggested a role for the endocannabinoid system, a lipid-based
retrograde signaling system, in mediating this interaction (Atsak et al. 2012). The
interaction between GCs and the noradrenergic system, and its contribution to
emotional memory enhancement, is thoroughly described by Roozendaal (2002)
and is also illustrated in Fig. 2.

Fig. 2 The interaction between GCs and the SNS in enhancing memory consolidation. GCs and
the noradrenergic system of the basolateral amygdala (BLA) interact at both presynaptic and
postsynaptic sites. Unlike GCs, adrenaline does not readily cross the blood-brain barrier, and a
peripheral-central pathway via the vagus nerve mediates its influences on the amygdala.
Adrenaline activates b-adrenoreceptors on the NTS, which project directly to the BLA and
indirectly to the locus coeruleus, leading to noradrenaline secretion. In the BLA, the b-
adrenoreceptor directly stimulates cAMP and cAMP-dependent protein kinase A. GR potentiate
this pathway efficacy, and also influence it via coupling with a1-adrenoreceptors. In addition, GCs
alter the levels of available noradrenaline via GR activation in NTS noradrenergic cell groups. GCs
glucocorticoids; GR glucocorticoid receptors; NTS nucleus of the solitary tract. Reprinted from
Psychoneuroendocrinology, 25, B. Roozendaal, “Glucocorticoids and the regulation of memory
consolidation”, 213–238. Copyright 2000 with permission from Elsevier Science
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Stress Intensity

The intensity of stress is another factor determining its effects on memory con-
solidation. A nonlinear dose-response relationship of neurotransmitters and hor-
mones is common, resulting from different receptor subtypes that operate with
specific accessibility, affinity, desensitization and signaling cascades.
A dose-response curve, inverted-U shaped, is well documented in the case of GCs
(Joels 2006) and is supported by behavioral and electrophysiological studies in
animals. For instance, while a moderate rise in GCs concentrations is positively
correlated with spatial memory in the Morris water maze (Sandi et al. 1997), too
high levels of stress (e.g. very low water temperature) do not lead to further
improvement but impair performance (Kim and Diamond 2002). In the hip-
pocampal CA1 pyramidal cells of rats, long-term potentiation (LTP) was found to
be affected by GCs in a dose-depended fashion, responding to an inverted U-shaped
curve (Diamond et al. 1992; Mesches et al. 1999). Using selective antagonists and
agonists for MR and GR, several studies demonstrated that the underlying mech-
anism is the different affinity of the GCs receptors. Enchanting effects of GCs on
memory consolidation were found to depend not only on saturated MR occupancy
but also on low to moderate GR occupancy (de Kloet et al. 1998; Roozendaal
2000). However, the dose-dependent effects of GCs have been mainly demonstrated
in animals (Joels 2006). Empirical evidence in humans is currently rather sparse.
For a detailed review on the inverted U-shaped curve of GCs, see Joels (2006).

Stress Duration

The examples set above concern acute stress, in the context and around the time of
the learning experience. The consequences might be significantly different in a
brain that has been chronically exposed to stressors. Chronic hyper-(re)activity of
the HPA axis can also occur in predisposed individuals and in association to many
diseases as well as aging. This can result in dendritic atrophy, reduced neurogenesis
and impaired synaptic plasticity in the hippocampus and in the medial PFC. In these
cases, learning and memory performances are typically impaired (McEwen 2004;
Sapolsky 1999). In the BLA, in contrast, chronic stress leads to robust dendritic
growth, which is related to greater anxiety-like behavior (Roozendaal et al. 2009).
In a similar way, hypertrophy in the dorsolateral striatum, seen in relation to chronic
stress, possibly mediates the bias towards more habitual patterns in instrumental
behaviors (Schwabe et al. 2012).
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Timing: Consolidation Versus Retrieval

Many students might know this too well: Stress at the time of an exam might lead to
a better memory of the stressing test experience itself (when recalled later), while
impairing the retrieval of the study material during the exam. Indeed, timing is of
critical importance in determining GCs effects on memory. In the short term, GCs
and other stress-induced mediators facilitate the strengthening of synaptic contacts
involved in the memory formation of the events that led to their release. At the same
time, they initiate gene-mediated signals that suppresse any unrelated information
from reaching the same brain areas. Indeed, long term memory retrieval is usually
impaired by cortisol (de Quervain et al. 2009; Wolf 2009). In most cases this
strategy is highly adaptive, prioritizing consolidation of potentially dangerous
events over retrieval at times of stress (Diamond et al. 2005; Joels et al. 2006).
However, its impairing effects on retrieval might negatively affect performance. In
rats that already learned the location of an underwater platform in the Morris water
maze, a footshock (i.e. stressor) or injection of corticosterone 30 min before a free
swim test lead to performance impairment (de Quervain et al. 1998). In humans,
similar impairing effects of stress and GCs were seen in declarative memory tasks
(de Quervain et al. 2000; Kuhlmann et al. 2005). Neuroimaging studies have
demonstrated that this GCs-induced impairment in declarative memory retrieval is
associated with reduced activity of the medial temporal lobe, the hippocampus in
particular (de Quervain et al. 2003; Oei et al. 2007).

Stress and Memory Reconsolidation

Stress and GCs have been demonstrated to enhance memory consolidation while
impairing retrieval. Do they affect a memory that has been successfully retrieved?
The traditional view on memory suggested that memory consolidation is a one-time
event, completed shortly after acquisition (McGaugh 1966). This unidirectional
view on memory was challenged by Misanin et al. (1968) who suggested that
memory reactivation (i.e. retrieval) can cause the memory to re-enter a labile state
until re-stabilization (reconsolidation) is completed. The reactivation-dependent
lability period was found to last for up to 6 h post-retrieval (Kindt et al. 2009;
Schiller et al. 2010), and was suggested to serve as an adaptive mechanism allowing
memory update (Alberini 2011; Alberini and LeDoux 2013; Forcato et al. 2014).
Various pharmacological agents have been found to affect memory reconsolidation,
thereby revealing the mechanisms mediating memory formation and modulation
after retrieval. For instance, Nader et al. (2000) demonstrated that reconsolidation is
a protein-synthesis-dependent process, while Kindt et al. (2009) showed that
reconsolidation of emotional memories is dependent on noradrenergic activity.
Both studies pointed to a similarity between reconsolidation after retrieval and
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initial consolidation. The possible influence of GCs and stress on memory recon-
solidation, however, have been investigated only recently.

Akirav and Maroun (2013) reviewed the different, often conflicting, effects of
stress and GCs administration on memory reconsolidation. Several animal studies
suggest an impairing effect of either stress induction or GCs administration on
memory reconsolidation (Yang et al. 2013). However, both GR agonists (Abrari
et al. 2008; Cai et al. 2006) and antagonists (Pitman et al. 2011) were found to
impair reactivated memories. The human literature had mainly focused on the
effects of stress on reactivated declarative memories. The studies demonstrated
either an enhancement (Schwabe and Wolf 2010; Zhao et al. 2009) or impairment
(Bos et al. 2014; Coccoz et al. 2011, 2013) of reactivated memories, with
conflicting results with regard to the effect on strong emotional memories. Recently,
however, Meir Drexler et al. (2015) demonstrated an enhancing effect of cortisol on
the reconsolidation of reactivated fear memories in healthy men. The fear condi-
tioning paradigm is a model for stress–and trauma-related disorders, and is often
used to investigate the emotional and cognitive mechanisms of aversive memories
(Pull 2007). The results of the study suggest a mechanism for emotional memory
persistence, and could contribute to the understanding of the persistence of emo-
tional memories in several psychiatric disorders.

Figure 3 provides a summary of the timing-dependent effects of stress on the
various memory processes.

Relevance for Psychopathology and Treatment

Due to the enhanced consolidation of highly emotional and stressful events, strong
memories are common following an aversive experience. This is a very adaptive
mechanism, yet even emotional memories weaken over time. In several circum-
stances, however, extremely aversive events can lead to maladaptive and traumatic
memories. This is seen in post-traumatic stress disorder (PTSD) and anxiety dis-
orders (e.g. phobias). PTSD is characterized by re-experiencing the evet, avoidance
of stimuli associated with it, and hyper-arousal (American Psychiatric Association
2013; Yehuda 2002). Re-experiencing symptoms include intrusive daytime recol-
lections, nightmares and flashbacks in which the traumatic event is retrieved. The
traumatic memories often keep their vividness and ability to evoke distress for
decades or even a lifetime after the event. Anxiety disorders, such as phobias, are
characterized by persistent fear that is excessive or unreasonable, cued by the
presence or anticipation of a specific stimulus or context (American Psychiatric
Association 2013). Exposure to phobic stimuli provokes retrieval of
stimulus-associated fear memory that leads to the fear response (de Quervain and
Margraf 2008; Fehm and Margraf 2002; Rapee and Heimberg 1997). The strength
of the fear memory is a result of over-consolidation due to action of stress hormones
at the time of the event (Pitman 1989). In these cases, the aversive event trace
remains easily reactivable to an aversive cue or even spontaneously (de Quervain
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and Margraf 2008). The persistence of the memories in the long-term is a possible
result of repeated retrievals and enhanced reconsolidation of the fear memory trace
at the presence of elevated GCs concentrations (Meir Drexler et al. 2015).

GCs, that can led to robust and maladaptive memories due to their enhancing
effect on emotional memory consolidation, can also provide the remedy. Extinction
learning occurs when a conditioned responding (e.g. fear) to a stimulus (e.g. spider)
is decreased when the reinforcer is omitted (Quirk and Mueller 2008). Extinction is
a new learning that creates a fear-inhibiting memory, and is the suggested mech-
anism underlying various cognitive-behavioral therapies (e.g. exposure therapy)
that successfully reduce learned fears (Rachman 1989). As a new learning, it
requires consolidation. Due to their memory-enhancing properties, GCs can be used
to facilitate the new safety learning in extinction-based therapies (de Quervain and
Margraf 2008). In addition, as a result of their retrieval-impairing properties, GCs
could partly interrupt the vicious cycle of spontaneous retrieving and reconsoli-
dation of traumatic memories, thereby promote the process of forgetting, a

Fig. 3 The effects of stress and glucocorticoids (GCs) on memory processes. Stress and GCs
effects on memory processes depend on the specific memory phase. Stress induction shortly before
encoding typically enhances memory (even though the findings are somewhat heterogeneous).
This effect is modulated by the exact timing and the emotionality/relevance of the material. Stress
induction after encoding (at the beginning of consolidation) has memory enhancing properties
(illustrated with the green arrow pointing upwards). Stress before memory retrieval, in contrast,
leads to an impairment (illustrated with the red arrow pointing downwards). The possible
influence of GCs and stress on memory reconsolidation have been investigated only recently with
mixed results
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spontaneous process occurring when memory in not reactivated (de Quervain and
Margraf 2008). For a review on GCs, their role in stress-related disorders and their
potential for treatment, see de Quervain and Margraf (2008); de Quervain et al.
(2009).

Conclusion

Stress leads to the activation of two systems: the sympathetic nervous system and
the hypothalamus-pituitary-adrenal axis. Their end-products of (nor)adrenaline and
glucocorticoids mediate different functions but also work in concert to promote an
adaptive physiological and behavioral response to the challenge. Stress can either
enhance or impair memory, and the timing of the stress relative to the task plays a
major role in determining the direction of these effects. The adaptive stress response
prioritizes consolidation of potentially dangerous events, therefore retrieval during
or shortly after stress exposure is usually impaired. Additional factors, such as
stimulus and context characteristics (e.g. emotionality and arousal), stress intensity
and duration, also play a role. While in several circumstances stress hormones can
lead to strong and persistent maladaptive or traumatic memories, their
memory-enhancing and retrieval-impairing properties also make them potential
adjuvants for treatment, e.g. in extinction-learning based therapies.
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