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Stress impairs memory retrieval. Recent findings illustrate the

temporal dynamics and the underlying mechanisms of this

effect. The effect appears to occur in multiple memory

systems, ranging from striatal-based stimulus-response

memory to prefrontal-based extinction memory. The effects of

stress on memory retrieval might have long-term

consequences  due to their impact on re-encoding and re-

consolidation. These properties could be of interest for future

intervention studies.
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Introduction
Our memories are influenced by stress and its associated

neuroendocrine responses. A frightening encounter with

a robber or an especially poor performance during a job

interview may be vividly remembered for a life time.

These are examples of the enhancing effects stress can

have on memory encoding and consolidation. At the

same time, we might forget our wedding anniversary

because we are stressed at work, or we might be unable

to retrieve the name of a specific brain region during a

stressful neurobiology exam. The latter two are exam-

ples for the impairing effects stress can have on memory

retrieval. This phenomenon in particular is the focus

of the present brief and selective review, which will

address the following main points: the temporal devel-

opment and underlying mechanisms of retrieval im-

pairment, its occurrence outside of the domain of

hippocampus-based memories, long-term consequences

of this retrieval impairment, and its relevance for mental

disorders (see Box 1).
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When faced with a real or anticipated threat, the organism

responds with a complex and well-orchestrated neuroen-

docrine stress response [1�]. The rapid activation of the

sympathetic nervous system (SNS) leads to the release of

(nor)adrenalin (NA) from the adrenal medulla. This ini-

tial response causes hypervigilance at the expense of

selective attention and other top-down control processes

[2,3�], and, with respect to memory, leads to enhanced

encoding of salient and relevant features of the environ-

ment [4,5]. In parallel, the hypothalamic–pituitary–adre-

nal (HPA) axis is activated. Corticotrophin-releasing

hormone (CRH), secreted from the paraventricular nu-

cleus of the hypothalamus, stimulates the anterior pitui-

tary to release adrenocorticotrophin (ACTH). This

messenger, in turn, causes the adrenal cortex to release

glucocorticoids (GCs; mostly cortisol in humans, and

corticosterone in most laboratory rodents). These stress

hormones first increase 5–10 min after stress onset and

typically reach their peak 20–30 min post-onset [6]. Glu-

cocorticoids exert their action via mineralocorticoid

(MRs) and glucocorticoid receptors (GRs). These two

receptor types differ in their localization (MRs are more

restricted to limbic regions, GRs are expressed more

widespread in the brain) and affinity. It was initially

assumed that these receptors exist exclusively within

the cell and exert slow but potentially long-lasting action

by directly influencing the genome (genomic GC effects)

[7��]. More recently, however, convincing evidence has

shown rapid, non-genomic GC effects mediated via mem-

brane-bound (as opposed to intracellular) versions of

these receptors [7��,8]. Three interacting and partially

overlapping stress response signals must thus be consid-

ered: (1) The initial arousal response mediated by NA and

CRH, (2) the slightly delayed non-genomic GC signal

with mostly excitatory properties, which occurs in inter-

action with the initial NA signal, and (3) the further

delayed genomic GC signal, which, mostly mediated

by intracellular GRs, reduces neuronal excitability and

promotes normalization of the system [1,9,10,11�]. These

three response waves are illustrated in Figure 1. The time

frames mentioned represent rough estimates, as they are

likely to differ depending on the intensity of the stressor

and/or the investigated brain region.

Stress and episodic memory retrieval:
temporal development and underlying
mechanisms
Initial findings on the enhancing effects of stress and GC

treatment on memory consolidation were already de-

scribed in the 1960s (e.g., [12]). Since then research
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Box 1 Summary of key points

The effects of stress on memory retrieval last longer than initially

expected. They reflect non-genomic and genomic GC effects.

The effects of stress on memory retrieval are not restricted to

hippocampus-based episodic memory retrieval. Striatum-based SR

memory retrieval as well as PFC-based (fear) extinction memory

retrieval are two examples for this.

The impairing effect of stress on retrieval can have long-lasting

consequences through the modification of re-encoding and re-

consolidation. This feature could make cortisol a useful add-on to

therapeutic interventions (e.g., exposure psychotherapy).

Patients with mental disorders (e.g., MDD and PTSD) show different

responsivities to GC, which are in line with an altered central GC

sensitivity in these disorders.
has established that the stress-induced activation of the

SNS and HPA axis leads to enhanced memories of the

stressful episode [13], especially regarding its central

aspects [5]. The two stress mediators achieve this by

interacting in the basolateral amygdala (BLA), thereby

boosting memory consolidation in the hippocampus
Figure 1
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(for recent reviews, see [4,9,14,15]). The impairing effect

of stress on memory retrieval was first thoroughly charac-

terized in 1998 by de Quervain and colleagues in rats. By

separating the initial acquisition phase from the retrieval

test by a day, they were able to show that stress prior to

long-term memory retrieval substantially impaired spatial

memory retrieval [16��]. Importantly, this effect was

apparent 30 min, but not two minutes or four hours, after

stress induction. This temporal profile is well in line with

a presumed non-genomic GC effect on memory retrieval.

Follow-up animal studies on this phenomenon revealed

that NA arousal and an intact basolateral amygdala (BLA)

are pre-requisites for its occurrence [17]. Similar findings

could be demonstrated in humans: GC administration or

exposure to a psychosocial laboratory stressor resulted in

impaired memory retrieval [18,19]. It is to be noted that

only free recall, but not recognition or cued recall, was

impaired in these initial studies, a fact which will be

picked up again later in this review. Additional studies

further revealed that the impairing effect of cortisol on

memory retrieval depends on testing-induced arousal [20]

and can be blocked by the administration of a beta
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tress Test) and their transcriptional and cognitive consequences.

slight delay, glucocorticoids (GCs) are released. These hormones can

ly to co-occur around one hour after stress exposure. Genomic and

ast, initial encoding as well as consolidation of material perceived

evelopment is based on a broad estimate derived from the literature.
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blocker preventing this arousal [21]. Regarding the neural

correlates of GC-induced memory retrieval impairments,

pharmacological neuroimaging studies were able to show

GC-mediated reduced activity in the hippocampus and

adjacent cortical structures during memory retrieval

[22,23].

Stimulated by the mounting evidence for rapid non-

genomic GC effects, studies have started to compare

rapid and delayed effects of stress or GC treatment in

several cognitive domains, including memory [1�,24].

While substantial progress has been made, time-depen-

dent variations in the effect of stress on memory retrieval

have received relatively little attention. One relevant

pharmacological study was recently able to show that a

cortisol injection affected memory retrieval within eight

minutes, which is strongly suggestive of a non-genomic

effect [25]. Another recent study in humans reported that

memory retrieval was impaired 25 min (at the time of

peak cortisol) but also 90 min stress exposure, illustrating

that the impairing effect of stress on memory might last

longer than initially expected [26�]. Interestingly, cortisol

concentrations were already back to baseline levels in the

group tested 90 min after stress exposure, demonstrating

that impairing effects of stress on memory retrieval can

occur even when GC levels are no longer elevated.

Together with the initial findings observed in rodents

[16��], this study suggests that the impairing effects of

stress on memory retrieval occur rapidly once cortisol

concentrations are sufficiently elevated, but that these

effects also persist for at least 90 min. This implies that

both initial non-genomic effects and later genomic effects

lead to impaired memory retrieval (for an in-depth re-

view, see [11�]). This interpretation is also in line with

recent studies in rodents [27]. Roozendaal postulates that

membrane-bound GRs in the BLA interact with central

NA signaling in rapidly boosting memory consolidation

and impairing memory retrieval [8]. In contrast, work by

Dorey and colleagues has provided evidence that hippo-

campal membrane-bound MRs, but not GRs, play a role

in mediating the rapid stress effects on memory retrieval

[28]. With respect to genomic effects, Rimmele and

colleagues could demonstrate that blocking the MR im-

paired memory retrieval, while blocking the GR en-

hanced retrieval [29]. In this study, the drugs were

administered several hours before memory retrieval

was tested, which suggests that it was indeed the con-

sequences of genomic GC actions that were being mea-

sured. In summary, it seems that both non-genomic and

genomic GC effects induce memory retrieval deficits (see

Figure 1).

While an inverted-U-shaped dose–response curve be-

tween GCs and memory consolidation is well-established

[14], the investigation of dose–response relationships has

received little attention with respect to memory retrieval.

Stress studies in humans illustrate that even a moderate
Current Opinion in Behavioral Sciences 2017, 14:40–46 
increase in cortisol in the late afternoon (when endoge-

nous cortisol concentrations are low) can impair memory

retrieval [30]. In contrast, a recent pharmacological study

using cortisol injections provided initial evidence for

an inverted-U-shaped function instead [25]. The dose–
response curve might differ depending on the presence

(stress) or absence (pharmacological cortisol administra-

tion) of strong prior noradrenergic activation [1�]. More-

over, there may be differences in dose–response

relationships between non-genomic and genomic effects.

If an inverted-U-shaped dose–response curve indeed

exists, its peak may lie in the range of basal (stress-free)

physiological cortisol concentrations.

Conceptually, it has been proposed that the retrieval

impairment is restricted to the ‘memory formation mode’

but is no longer present during the ‘memory storage

mode’ (during consolidation) [31]. However, the findings

discussed above indicate that the effects occur later and

last longer, thus primarily occurring during the consolida-

tion phase.

Stress and memory retrieval outside the
domain of hippocampus-based memories
Initially, it appeared that the effects of stress on memory

retrieval are restricted to hippocampus-based episodic/

spatial memory tasks [16��,19]. This was in line with the

notion that the hippocampus is especially sensitive to

stress due to its high number of MRs and GRs [32].

Indeed, recognition and cued recall were not influenced

by stress in initial studies in humans, further supporting

the notion of a specific effect on hippocampus-based

episodic recollection [18,19]. More recently, however,

several studies have demonstrated stress-induced recog-

nition impairments, evidencing that not only free recall is

affected by stress [33]. Accumulating evidence reviewed

below has quite convincingly shown that the effects of

stress on memory retrieval are far broader than initially

conceived.

Stimulus-response (SR) memory describes the learned

association between a specific cue and a specific response.

It has been linked to the basal ganglia [34] and can be

tested in humans and rodents by using maze tasks with a

single, clearly visible cue [35]. In the first human study on

this topic, participants exposed to stress prior to SR

retrieval showed impaired retrieval performance [36].

Similar findings were obtained recently in rodents

[37�]. In this study, the authors could additionally dem-

onstrate that the SR retrieval deficit is indeed mediated

by GCs. These findings thus highlight that stress and the

associated release of GCs can also impair the retrieval of

striatal-based SR memories.

Another area of research in which the impairing effects of

stress on memory retrieval have received considerable

attention is the field of (fear) extinction. When a neutral
www.sciencedirect.com
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Figure 2
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Impact of stress on extinction memory retrieval. Top row: After successful extinction, the conditioned stimulus (CS; e.g., a tone) no longer leads to

a conditioned response (CR; an increase in heart rate). This is due to the inhibitory action of the extinction memory trace (green arrow). The

original acquisition memory trace (red arrow), however, is not erased but still intact. Bottom row: Stress appears to weaken this inhibitory memory

trace, causing a return of the initial response.
stimulus (e.g., a tone; the conditioned stimulus or CS) is

coupled with an aversive event (e.g., a shock; the uncon-

ditioned stimulus, or UCS), the organism quickly learns to

respond to the CS alone (e.g., by showing freezing be-

havior; the conditioned response, or CR). During extinc-

tion, the CS is no longer coupled with the UCS, and the

CR disappears. The majority of current learning models

postulate that this decreased responding is not caused by

an erasure of the original acquisition memory trace, but

rather reflects new inhibitory learning [38,39�]. This is

demonstrated by the occurrence of several recovery phe-

nomena such as contextual renewal, reinstatement or

spontaneous recovery [40]. When it comes to the impact

of stress, the fascinating question arises whether stress

prior to extinction retrieval will impair the original acqui-

sition memory trace or the inhibitory extinction memory

trace formed later on. Evidence is accumulating that

stress exposure prior to retrieval typically impairs extinc-

tion retrieval, leading to a return of fear in human parti-

cipants [41] as well as in patients with anxiety disorders

[42]. We have demonstrated similar findings using a

predictive learning task. Stress induction in the laboratory

caused impaired extinction retrieval, manifested as en-

hanced conditioned responding in the acquisition context

(i.e., an enhanced renewal effect) [43]. In a pharmacolog-

ical fMRI study with the same predictive learning task,

cortisol administration prior to extinction retrieval led to
www.sciencedirect.com 
impaired extinction retrieval, as evidenced by an en-

hanced renewal effect. This was associated with reduced

neural activity in the ventromedial prefrontal cortex

(vmPFC) [44], a key region in the extinction network

(e.g., [45]). The available data supports the notion that

GCs impair the extinction memory trace. The reason for

this selective impairment might be the younger age of

this memory trace, its context dependency, or its reliance

on the vmPFC for retrieval. By impairing the extinction

memory trace, GCs thus cause a return of the initially

acquired response (see Figure 2). However, enhanced

retrieval of the original memory trace could still be co-

occurring — an explanation in need of empirical assess-

ment. A mechanistic understanding of the impact of stress

on extinction retrieval will pave the way toward better,

targeted relapse prevention.

Long-term consequences of retrieval
impairment
Another important issue concerns the long-term conse-

quences of the stress-induced retrieval failure. Is this a

temporal blockage which completely disappears once

stress has ceased, or does the impaired retrieval have

consequences beyond the stressful episode, for example,

due to an effect on (re)consolidation? A pharmacological

study using cortisol administration before memory re-

trieval observed that the cortisol group showed a memory
Current Opinion in Behavioral Sciences 2017, 14:40–46
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Box 2 Open questions

How does activation of membrane-bound MRs and GRs influence

memory retrieval?

How do non-genomic and genomic GC effects interact in influencing

memory retrieval?

What is the dose–response relationship between GCs and memory

retrieval?

Are there memory systems which are resistant to the impairing effect

of stress on retrieval?

Are the effects of stress modulated by genetic and epigenetic

factors?

Do the GC alterations observed in several mental disorders (e.g.,

MDD, PTSD) reflect predispositions or consequences of the

disorders?

Can the beneficial effects of GCs observed in clinical intervention

studies be translated into the clinical praxis?
impairment as long as one week after the retrieval under

the influence of cortisol had taken place [46]. In addition,

another recent study found impaired memory retrieval at

very low cortisol levels, induced by the cortisol-synthesis-

inhibitor metyrapone [47�]. Again, this impairment was

still detectable a week later. Conceptually, the poor

retrieval at times of high (or very low) GC concentrations

could lead to impaired re-encoding and/or impaired re-

consolidation [48]. Taken together, these findings illus-

trate that impaired retrieval under stress can have long-

lasting consequences for the specific memory.

Beneficial effects of the long-term consequences of cor-

tisol administration on human memory have been ob-

served in the context of extinction-based (i.e., exposure)

psychotherapy. Cortisol administered before exposure

treatment enhanced the long-term success of therapy

in patients with fear of heights and in patients with spider

phobia [49��,50]. The combination of impaired retrieval

of the initial fear memory with enhanced consolidation of

the newly acquired extinction (safety) memory could be

the underlying mechanism of this therapeutic effect of

the stress hormone [51].

Alterations in patients with mental disorders
There is increasing evidence that the effects of stress on

memory retrieval are altered in patients with mental

disorders. Dysfunctions in the hypothalamic–pituitary–
adrenal (HPA) axis have been reported for several mental

disorders. While major depressive disorder (MDD) seems

to be characterized by enhanced cortisol release in con-

cert with a reduced feedback sensitivity of the HPA axis

[52], the opposite pattern has been reported in post-

traumatic stress disorder (PTSD) [53]. In a series of

studies, we investigated the effects of cortisol on memory

retrieval in MDD and PTSD. While cortisol administra-

tion failed to affect memory retrieval in MDD patients,

patients with PTSD showed enhanced, rather than im-

paired, memory retrieval after cortisol [54]. These results

indicate an altered sensitivity to cortisol in these disor-

ders, which not only influences the HPA axis and its

negative feedback, but extends to an altered sensitivity of

brain functions involved in episodic memory retrieval

(presumably the hippocampus [55]). Future studies are

required in order to determine whether these alterations

are reversed after successful treatment, thereby elucidat-

ing whether they reflect pre-morbid risk factors or revers-

ible disease consequences.

Conclusion
Taken together, empirical evidence obtained in recent

years has changed the way we look at the impact of stress

on memory retrieval. The impairing effects of stress last

longer, concern a broader range of memory systems, have

lasting consequences and are altered in several mental

disorders. These novel findings raise new questions for
Current Opinion in Behavioral Sciences 2017, 14:40–46 
future research. Some of the most central are summarized

in the Box 2.
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