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A B S T R A C T

Translational neuroscience bridges insights from specific mechanisms in rodents to complex functions in humans
and is key to advance our general understanding of central nervous function. A prime example of translational
research is the study of cross-species mechanisms that underlie responding to learned threats, by employing
Pavlovian fear conditioning protocols in rodents and humans. Hitherto, evidence for (and critique of) these
cross-species comparisons in fear conditioning research was based on theoretical viewpoints. Here, we provide a
perspective to substantiate these theoretical concepts with empirical considerations of cross-species metho-
dology. This meta-research perspective is expected to foster cross-species comparability and reproducibility to
ultimately facilitate successful transfer of results from basic science into clinical applications.

1. Introduction

In the biomedical research enterprise, the term “translation” often
decorates review articles, original publications and grant applications.
It promises, for instance, the elegant transfer of mechanisms in rodents
to complex human functions and vice versa. In behavioural neu-
roscience, specifically, translation entails the mapping of synapse-spe-
cific processes in animal models onto neurobiological systems in hu-
mans. However, the potential of translational research comes with
major challenges, most importantly methodological disparities that are

inherent to experimental protocols in non-human animals and humans.
Consideration of such methodological disparities has been suggested to
aid potential translation of findings in biomedical sciences (Freedman
et al., 2015; Kola and Landis, 2004; Macleod et al., 2014). Here, we
provide such considerations for fear conditioning research across spe-
cies.

Although translational work in neuroscience is challenging, there
have been some successes. For example, decades of research on the
basic mechanisms of emotional learning and memory in animals has
yielded significant insight into novel therapeutic approaches for clinical
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disorders of fear and anxiety in humans (e.g., Fenster et al., 2018;
Griebel and Holmes, 2013,Mataix-Cols et al., 2017; Ressler et al., 2004;
Singewald et al., 2015; Walker et al., 2002). Indeed, one form of
emotional learning -Pavlovian fear conditioning- has been promoted as
the prime example of a “translational” paradigm (Kandel et al., 2014;
Milad and Quirk, 2012). Although the importance of translational work
has been emphasised from a theoretical perspective, the practical im-
plementation to realize translational research in fear conditioning ex-
periments has been neglected so far. While translation of findings is
often not the primary goal in fear conditioning experiments, transla-
tional implications are often inferred without further considering how
and if such promises can be met in practice. We argue that it is im-
portant to consider the impact of methodological differences on trans-
lational research in rodents and humans in order to provide orientation
how to evaluate translational research in practice.

Here, we will compile the practical, methodological considerations
for cross-species research in Pavlovian fear conditioning, derived from
discussion across ten different international labs working on fear con-
ditioning in rodents or humans. To this end, we aim to initiate a dis-
cussion on cross-species challenges and provide methodological con-
sideration for translational research that we expect to ultimately
advance progress in fear conditioning research. We also intend to go
beyond theoretical ideas of translation by informing mechanistic in-
sights across species with an evidence-based methodological compar-
ison to ultimately foster translational progress.

1.1. Pavlovian fear conditioning — a simple protocol?

Across species, learning to identify and predict danger is key for
survival. Animals, including humans, are equipped with an evolu-
tionary-conserved (neuro)physiological machinery that mobilizes de-
fensive responses to mitigate current threats as well as mediates
learning to anticipate future threats (Blanchard, 2017; Blanchard et al.,
1989; Fanselow, 1994; LeDoux, 2012; Maren, 2001). Theoretically,
these conserved circuits allow for the examination of the behavioural
and biological basis of learned threat responses in rodents (such as rats
and mice) to infer how these processes operate in humans.

The study of learned defensive behaviour has relied upon Pavlovian
fear conditioning, a fundamental form of associative learning that ex-
hibits similar properties in a range of species, including rodents to
humans. In the laboratory, Pavlovian fear conditioning procedures ty-
pically involve several phases, including acquisition training, extinction
training and retrieval tests of learned responses (for an overview see
Lonsdorf et al., 2017). In brief, during acquisition training, individuals
learn to associate a distinct cue (conditioned or conditional stimulus, CS
+) or a whole context (conditioned or conditional context, CXT+) with
the occurrence of an aversive event (unconditioned or unconditional
stimulus, US). As a result, the presence of the CS+or CXT+ elicits a
conditioned or conditional response (CR), which manifests as a number
of physiological responses and species-specific defensive reactions.
Collectively, these diverse CRs are often termed “fear” CRs, as a useful
way to aggregate a number of different defensive responses (freezing,
tachycardia, hypertension, sweating, etc.). Although it is not known
whether non-human animals experience a subjective state of fear (e.g.,
LeDoux, 2014), there are clearly similarities in the nature of the CRs to
aversive CSs across mammalian species and these responses likely re-
flect a central state of fear (whether experienced subjectively or not;
Fanselow and Pennington, 2018). During a subsequent extinction
training phase, the CS+or CXT+ is presented without the US, which
leads to a decrease in the magnitude and/or frequency of the CR. The
expression (and inhibition) of CRs can be probed during retrieval tests.

Although Pavlovian fear conditioning procedures can be performed
in both rodents and humans, translation of results across species is
challenged by inherently different procedural and methodological in-
stantiations of Pavlovian fear conditioning protocols in rodents and
humans. In the following, we describe these differences and their

relevance to cross-species comparisons between rodents (here restricted
to mice and rats) and humans. In particular, we aim to raise awareness
on how methodological differences might impact interpretation of re-
sults, in order to promote valid cross-species comparisons of existing
findings, as well as to improve translational designs of future studies.
The overarching aim of this overview is to equip readers from diverse
backgrounds with a basic set of tools to evaluate cross-species methods
employed in fear conditioning research to enable them to correctly
interpret findings. We further provide advice how to consider and
overcome cross-species methodological differences to utilize the full
potential of translational research in fear conditioning. First, we discuss
and compare key elements entailed in the fear conditioning paradigm
across both species. Second, we describe the most important dependent
measures within each species and third, comment on individual dif-
ferences. Detailed “what to consider” key-points summarizing the key
take-home messages provide practical guidelines for the reader.

2. Paradigm

While this description of the fear conditioning paradigm sounds
straightforward, the specific methodological instantiation (e.g., which
stimulus types for the CS, CXT, US are used; timing of acquisition and
extinction training) can heavily affect the outcomes, as well as com-
parability across species. Hence, consideration of methodological de-
tails of species-specific protocols is central to inform cross-species
comparability of results. Here, we will compare essential elements of
fear conditioning paradigms that are shared across species (e.g., CS,
CXT, US) or species-specific elements (e.g., instruction of human par-
ticipants).

2.1. Conditioned stimuli (CS): cues and control conditions

Cues of different modalities have successfully been employed as CSs
across species. In rodents, auditory cues are typically employed (for an
overview see Wotjak, 2019), whereas in humans, visual cues are
common (for a comparison of visual and auditory CSs on fear-po-
tentiated startle see Norrholm et al., 2011 and for a discussion see
Lonsdorf et al., 2017). Despite inherent differences in underlying sen-
sory processing, learning-related mechanisms are considered compar-
able (Delgado et al., 2006; Maren, 2001; Whalen and Phelps, 2009; cf.
Bergstrom and Johnson, 2014; Tazumi and Okaichi, 2002). Typically,
stimuli that are neutral prior to fear acquisition training are used as CSs,
but in some cases stimuli that inherently signal threat-relevant in-
formation have been employed. Importantly, threat-relevant cues can
be species-specific, including pictures of angry facial expressions in
humans (Mineka and Ohman, 2002; Öhman and Dimberg, 1978) or
contact with conspecifics in animals (Toth et al., 2012; Toth and
Neumann, 2013).

Fear conditioning paradigms typically include control conditions to
discriminate associative from non-associative processes (such as habi-
tuation, dishabituation and sensitization, see Rescorla, 1967). These
control conditions, however, often consist of different procedures in
rodents and humans. In rodent work, single-cue protocols with a single
CS+ are typically employed that include a separate control group in a
between-subject design. Typical control groups either receive the same
number of CS and US presentations as the experimental group that are
however either explicitly unpaired (Pearce and Dickinson, 1975;
Sevelinges et al., 2007) or presented randomly (i.e., ‘truly random
control'; e.g., Barnet and Hunt, 2005; Jüngling et al., 2015; Rescorla,
1967; Rogan et al., 1997) or CSs are presented in the absence of any US
(CS alone paradigm; Do-Monte et al., 2015; Maren, 2001; Rescorla,
1967). In research in humans, fear conditioning is typically conducted
with differential protocols, in which a CS- that is not paired with the US is
presented interleaved among paired CS+/US trials in a within-subject
design (see Norrholm et al., 2008 as an example for the use of single-
and differential-cue protocols in humans). Additionally, another
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common within-subject condition in human experiments that focus on
extinction training includes two CS+, one of which is presented during
extinction training (CS+ E) while the other CS+ is not (CS+U) and
serves as an unextinguished control (Milad et al., 2007, 2009a, 2009b;
Zeidan et al., 2011).

Importantly, control conditions used in animals and humans need to
be interpreted with caution, since these controls may not always
function as unambiguous neutral conditions (as discussed by Lissek
et al., 2005a, 2005b; Lonsdorf et al., 2017; Rescorla, 1967; Wotjak,
2019). Control conditions including explicitly unpaired CS/US pre-
sentation in single-cue protocols for example can increase the salience
of the context and may allocate safety signal properties to the unpaired
cue (Baas and Heitland, 2015; Heitland et al., 2016; Norrholm et al.,
2008; Rogan et al., 2005; Tang et al., 2001; Wotjak, 2019). Similarly,
the CS- in differential protocols may also acquire safety signal proper-
ties (Gerber et al., 2014; Kong et al., 2014; Lohr et al., 2007; Rogan
et al., 2005) and hence may imbue associative learning processes – yet
inhibitory (i.e., CS/‘no US’) rather than excitatory in nature (Cándido
et al., 2004; Seligman and Binik, 1977; Wendt et al., 2015; but see
Chauveau et al., 2012; Jüngling et al., 2008). These additional learning
processes recruited in differential protocols include not only safety
learning (as discussed above), but also stimulus habituation (Thompson
and Spencer, 1966) and learned irrelevance (Baetu et al., 2005; Baker,
1976; for discussion see Ohman, 2009).

Differential conditioning protocols in rodents often include pre-
sentations of the CS+ and CS- on separate days (Chauveau et al., 2012;
Jüngling et al., 2008; Tang et al., 2003), a procedure rarely employed in
fear conditioning experiments in humans, where CS+ and CS- are
presented interleaved within the same training session (for an overview
see Lonsdorf et al., 2017). In protocols that include CS- presentation on
the same day as the CS+, the sequence of the CS presentation in ro-
dents can either be fixed (e.g., all CS- trials always precedes the CS+,
Goosens et al., 2003; Herry et al., 2008; Letzkus et al., 2011), or pseudo-
randomized, (e.g., Likhtik et al., 2014; Stujenske et al., 2014), which
resembles CS presentation procedures that are commonly used in hu-
mans.

In conclusion, experiments in rodents and humans use fear con-
ditioning procedures that reliably engage excitatory learning to a CS
that predicts an aversive US. However, differences typically exist with
respect to the employment of control conditions (e.g., between vs.
within-subject designs, sequence of CS presentations). As these proce-
dural differences may result in the engagement of different or addi-
tional learning mechanisms (e.g., safety learning, see above) they po-
tentially hinder direct comparison of results between (and within)
species. Moreover, recruitment of such additional learning mechanisms
can induce more individual variance in fear learning. For example,
safety learning is reduced within individuals with high trait anxiety
(e.g., Gazendam et al., 2013; Haaker et al., 2015; Haddad et al., 2012;
for an overview see Lonsdorf and Merz, 2017) and diagnoses of anxiety
related disorders (Duits et al., 2015; Jovanovic et al., 2010; Lissek et al.,
2005a, 2005b). Hence, even though fear conditioning protocols across
species share similar operationalization of learned threat anticipation to
the CS+, the specific operationalization (e.g., if and when a CS- was
presented) of control conditions and their underlying mechanisms
needs to be considered to make a valid interpretation of translational
results.

2.2. Context conditioning

Context in Pavlovian fear conditioning experiments has been de-
fined as the internal (physiological and cognitive, i.e., interoceptive) or
external (environmental and social, i.e., exteroceptive) background in
which associative learning and retrieval takes place (Bouton, 2004;
Maren et al., 2013). Contexts are configural representations of nu-
merous multimodal cues, and they can be separated from discrete cues
based on their modality, duration, complexity and temporal

arrangement (Fanselow, 2010; Rudy, 2009). A context can be associa-
tively learned as a predictor for a US (here termed as CXT+) and/or
setting the occasion for CS/US associations that have been learned
during acquisition and extinction training. As such, the context plays a
central role in gating the expression or inhibition of CRs across species
(Bouton, 2002; Goode and Maren, 2014).

In animal research, a multisensory manipulation of external con-
texts is common practice (Maren, 2001). This is often accomplished by
manipulating specific features of the physical chambers (e.g., size, floor
textures, visual patterns, odors, background noise, ambient illumina-
tion, or a combination of all) in which animals undergo acquisition
training, extinction training, and retrieval testing (Bouton, 2002). In
addition to these exteroceptive stimuli, internal stimuli create inter-
oceptive contexts that influence fear conditioning. Interoceptive con-
texts can include drug or hormonal state (Acca et al., 2017; Bouton
et al., 1990; Cunningham, 1979), deprivation state (e.g., hunger), as
well as the passage of time (Bouton, 2002; Maren et al., 2013). In hu-
mans, exteroceptive contexts typically consist of visual stimuli (Alvarez
et al., 2008; Andreatta et al., 2015; Kroes et al., 2017; Marschner et al.,
2008) including colours of computer background screens (Haaker et al.,
2013a, 2013b; 2017; Kalisch et al., 2006; Pohlack et al., 2012), complex
images of environments (Lonsdorf et al., 2014; Milad et al., 2007), or
virtual visual contexts (Glotzbach-Schoon et al., 2013; Huff et al., 2010;
Kroes et al., 2017). Investigations in humans that employ two physically
different rooms (to mirror the context manipulations in animals) are
rare in humans (LaBar and Phelps, 2005a, ; Schiller et al., 2008).
Moreover, in contrast to work in animals, interoceptive contexts (e.g.,
drug state) in humans and their influence on fear conditioning pro-
cesses have not been investigated in detail. In particular, while inter-
oceptive states in humans have been manipulated (e.g., stress-manip-
ulation or administration of cortisol), such interoceptive states have not
been used as a contextual manipulation of fear conditioning processes
(e.g., enhanced cortisol during acquisition training and retrieval
testing).

In sum, Pavlovian fear conditioning in humans occurs in contexts
that are differentiated by subtle changes in visual stimuli, rather than
wholesale changes of the surrounding multisensory environment, as
employed in rodents. In the last decade, computer-generated contexts in
virtual realities that are either presented on large screens or through
(immersive) head-mounted displays have gained increasing popularity
(Baas et al., 2004; Glotzbach et al., 2012; Grillon et al., 2006; Huff
et al., 2010; Kroes et al., 2017). Nonetheless, despite their clear ad-
vantage to easily construct different contexts with more complex en-
vironmental features, these virtual contexts are typically limited to vi-
sual stimuli (Kroes et al., 2017; Maren et al., 2013). It should moreover
be considered that acquisition of neural responses in humans (e.g.,
functional magnetic resonance imaging (fMRI), magnetoencephalo-
graphy, electroencephalography) typically restricts the physical context
(e.g., the bore of an fMRI scanner; Maren et al., 2013).

Despite the procedural differences in context operationalization,
there is translational evidence for basic contextual influences on the
expression and inhibition of conditioned fear, which is mediated by
converging neural networks across species (Haaker et al., 2013a,
2013b; Maren et al., 2013; Milad et al., 2007). However, the effects of
such simple instantiation of contextual features in human experiments
(e.g., screen background) are limited, since contextual features from the
testing room might override contextual learning (Kroes et al., 2017).
Moreover, subtle changes in screen backgrounds can induce unintended
contextual effects, which has been discussed with respect to reinstate-
ment of CRs in humans (Haaker et al., 2014; Sjouwerman et al., 2015).
When presenting reinstatement US, experiments in humans often em-
ploy diverse visual contextual features (e.g., black background screen,
fixation cross, background screen without cues, etc.), without con-
sidering how these subtle differences can impact the contextual mod-
ulation of reinstated CRs during a later test. In contrast, contexts pre-
sented dur ing reinstatement in rodents often entail well defined,
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multisensory features. So far, only one study in humans used different
rooms to test the contextual influence on reinstatement of CRs in hu-
mans (LaBar and Phelps, 2005a,). It is plausible that future experiments
that employ more holistic operationalization of contexts in humans may
induce contextual gating of the expression and inhibition of CRs that is
more comparable to research in rodents and allow for investigation of
more fine-grained contextual effects. Hence, operationalization of
contexts as holistic environments in humans would overcome the gap to
research in rodents and allow for a better cross-species investigation of
contextual influences on CRs.

2.3. Unconditioned stimuli (US)

Across species, the most commonly employed US in Pavlovian fear
conditioning designs is electrical stimulation. Other cross-species US-
types include high-intensity white noise bursts and air blasts (see
Lonsdorf et al., 2017 for more details on US employed in humans and
Wotjak, 2019 for rodents). Naturalistic USs in turn, are typically spe-
cies-specific and consequentially more difficult to translate between
species. Naturalistic USs in rodents include, for instance, predator
odour (Takahashi et al., 2008) and in humans videos of actors that
insult human participants (Reichenberger et al., 2017; Wieser et al.,
2014) or fearful human faces paired with screams (Glenn et al., 2012).

The sensory quality of electric stimulation is considered to be
comparable across species (see Wotjak, 2019 for a discussion on noci-
ceptive comparability in rodents), despite different operationalization:
In rodents, electric stimulation is usually given as a brief scrambled AC
shock to the feet (Curzon et al., 2009) delivered through a metallic grid
floor. In human participants, a DC shock is commonly applied to the
hand or forearm through attached electrodes (Lonsdorf et al., 2017).
Usually, in both species, the intensity of the electric stimulation is
chosen to be an aversive, but only mild nociceptive signal.

Even if we here assume comparable nociceptive qualities, there exist
major differences across species with respect to controllability and
previous experience of the US. More precisely, human volunteers ty-
pically have some control over the US intensity (at least for electric
stimulation), which is, for ethical reasons, typically adjusted to toler-
able levels (“unpleasant, but not painful” or “unpleasant and painful,
but bearable”). The precise procedure to reach such a criterion varies
however between laboratories (see Lonsdorf et al., 2017 for more de-
tails). These pre-experimental calibration procedures naturally involve
pre-exposure to the US. As a consequence, human participants, in
contrast to rodents, are neither naïve to the intensity nor the imminence
of the threat. Importantly, pre-exposure to the US has been found to
attenuate learning of the CS+ as predictors for the US in rodents
(Kamin, 1961) as well as in humans (Meulders et al., 2012; Taylor,
1956). US pre-exposure within the experimental context might yield
excitatory learning, which might impact subsequent learning about the
CS/US contingencies, including blocking learning about the CS (Kamin,
1968; Yau and McNally, 2019; but see Maes et al., 2016). It has further
been shown in rodents that an acquired context-US association (i.e.,
first learning) changes the neurochemical substrates that underlie
subsequent acquisition training to a CS+ (i.e., second learning; Finnie
et al., 2018). In addition, human participants are informed that the
experiment involves administration of an electric stimulation prior to
the experiment. Hence, prior to fear acquisition training, participants
are provided with instructions about the US (cf. details on instructions)
in addition to directly experiencing the US during the calibration pro-
cedures.

Yet, the electrical stimulation USs are essential to fear conditioning
protocols across species. In rodents, the magnitude of the US tends to
produce monotonic increases in CRs, such as freezing behaviour
(Fanselow and Bolles, 1979) although this relationship is not reflected
by increasing acoustic startle responses (Davis and Astrachan, 1978). In
rodents, US intensities are commonly between 0.4–1.0 mA for mice and
0.5–1.0 mA for rats with durations of 0.5–2.0 s. To properly interpret

these intensities, they should be related to the pain threshold of the
animal (same strain and in the same setup, Wotjak, 2019). In humans,
physical US intensities are often not informative, because participants
rate their subjectively experienced unpleasantness, which typically
corresponds to values of 5 or 7 on a 10 point scale (from 0 “I feel
nothing” to 10 “maximally unpleasant”; e.g., Andreatta et al., 2015;
Haaker et al., 2013a, 2013b; Lonsdorf et al., 2017; Pohlack et al., 2012).
Importantly, in rodents high US intensities promote the generalization
of conditioned responding. In rodents, generalization has been de-
scribed to stimuli that are not directly associated with the US such as
freezing to the context (Baldi et al., 2004) or CS- (Ghosh and Chattarji,
2015; Laxmi et al., 2003), as well as it might lead to general sensiti-
zation of fear responses (Kamprath and Wotjak, 2004; Siegmund and
Wotjak, 2006; for an overview see Riebe et al., 2012). Converging
findings in humans are sparse (for initial studies on neurobiological US
processing see Goodman et al., 2018; Knight et al., 2010), but there is
some evidence that highly aversive multisensory USs (electric stimu-
lation combined with white noise and looming snake pictures) induce
generalization of skin conductance responses to novel cues as compared
to an electric US alone (Dunsmoor et al., 2017).

Experiments in rodents generally employ US presentations that
follow presentations of the CS+, so called continuous paring or 100%
contingency, whereas human experiments employ continuous, but also
partial pairings that include unpaired CS+ presentations (contingencies
vary from 100% to below 20%, for review see Lonsdorf et al., 2017;
Lonsdorf and Merz, 2017; Sehlmeyer et al., 2009). Lower contingencies
have been associated in humans with diminished SCR differential (CS
+>CS-) responses (Grady et al., 2016) and reduced amygdala re-
sponses (Dunsmoor et al., 2007, but see Sehlmeyer et al., 2009), as well
as reduced freezing to an auditory CS+ in mice (saline group in ex-
periment 3 in Cain et al., 2005). Similarly, reducing the CS-US con-
tingencies by additional insertion of USs is reflected by decreased
freezing to an auditory CS+ in mice (saline group in experiment 2 in
Cain et al., 2005). Rred Reduced contigenczy between Re diminished
correlates of synaptic plasticity (long-term potentiation) in the baso-
lateral amygdala in rats, when contigency between excitatory post-
synaptic potentials (EPSP, mimiking CS signals) and depolarisation
(mimiking US signal) is reduced (Bauer et al., 2001). Hence, as postu-
lated by animal work in operant conditioning (Rescorla and Wagner,
1972), contingency between the CS and US scales the processes that
underlie learning of CS-US association and the resulting CRs. Studies in
humans often employ lower contingencies to slow down CS-US
learning, for example to probe learning processes along a larger number
of trials, or to analyse unpaired CS presentations (without any US
signal) or to slow down extinction learning that follows upon acquisi-
tion. Evidence for prolonged CRs during extinction training after partial
pairings during acquisition training has mostly been provided from
animal studies that used operant protocols (Bouton et al., 2014;
Capaldi, 1967). In human experiments, the separation between acqui-
sition and extinction training might also be less pronounced (i.e., a clear
start of extinction training is not clear to the participants) when ac-
quisition training employed low CS-US contingencies and extinction
follows immediately after acquisition training (without a gap, see
Timing of experimental phases). Clear separation between acquisition and
extinction training, which might be induced in transitions from con-
tinuous pairings during acquisition to immediate extinction training,
might signal new learning phases (due to a strong violation of ex-
pectations) and thereby influence context-dependent extinction
learning processes (Dunsmoor et al., 2018; Gershman et al., 2017).

In sum, the use of electric stimulation as US in fear conditioning
protocols is considered to induce comparable nociceptive effects across
species. Yet, differences across species with respect to the controll-
ability, pre-exposure and expectations about the US exist, which in-
fluences threat learning processes in rodents and humans differently
(e.g., by expectancy-driven adaption or the impact of instructions about
the US). More cross-species research on how procedural factors might
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shape US expectancy could help to enhance translation of results across
species.

2.4. Instructions

An essential challenge to translational research is that human par-
ticipants are always verbally informed about the upcoming experiment,
while rodents are not. Information about the experiment (typically re-
ferred to as instructions) have a powerful impact on fear and safety
learning (e.g., Atlas, 2019; Atlas et al., 2016; Duits et al., 2017; Mertens
et al., 2018a, 2018b, 2016; Sevenster et al., 2012) and therefore have
consequences on the interpretation of findings in humans and trans-
latability of results across species.

In humans, instructions vary from explicit CS/US contingency in-
formation (‘Only the blue square will be followed by the aversive sti-
mulus, the yellow square will never be followed by the aversive sti-
mulus’) to no information about contingencies (‘Attend to the visual
material on the screen’) with varying instantiations in between (‘One of
the two pictures presented on the screen will be followed by the aver-
sive stimulus, the other not. You will be able to figure out which one by
paying close attention’; for an overview see Lonsdorf et al., 2017). Such
instructions concerning CS/US contingencies or changes thereof may or
may not be provided prior to every experimental phase (i.e., acquisition
and extinction training, retrieval tests). In addition to instructions,
probing ratings of fear and US expectancy might further enhance
awareness for the CS/US contingency and affect conditioned responses
(Boddez et al., 2013; Lipp, 2006; Mertens et al., 2018b; Razran, 1955;
Sjouwerman et al., 2016; Warren et al., 2014).

Instructions have been employed, for instance, to minimize in-
dividual differences in awareness about CS/US contingencies. For ex-
ample, when extinction learning is of primary interest, instructions
about CS/US contingencies during fear acquisition may minimize in-
dividual differences prior to extinction. It should, however, be con-
sidered that such type of instructions has the potential to affect sub-
sequent phases. Furthermore, some paradigms rely completely on
instructions (i.e., ‘threat of shock’, e.g., Bublatzky et al., 2018; Grillon
et al., 1991; Phelps et al., 2001) to produce anticipatory threat re-
sponses without providing direct US experiences.

Importantly, instructions affect the temporal dynamics of (condi-
tioned) responding over trials. More precisely, explicit CS/US con-
tingency instructions induce US anticipation to the CS+ as well as
discrimination from safety signals (i.e., CS-) already in the first acqui-
sition training trial (i.e., expression of instructed knowledge rather than
learning by direct experiences). In contrast, learning from direct ex-
periences (without explicit CS/US contingency instructions) involves a
gradual development of US anticipation (Duits et al., 2017;
Sjouwerman et al., 2015; Tabbert et al., 2006) and hence CS dis-
crimination typically evolves over time during acquisition training.

Furthermore, the biological substrates recruited and learning pro-
cesses involved in socially transmitted verbal information (i.e., in-
structions) as opposed to direct learning experiences have been shown
to be distinct (Atlas, 2019; Atlas et al., 2016; Braem et al., 2017;
Mechias et al., 2010; Mertens et al., 2018a; Olsson and Phelps, 2007;
Phelps et al., 2001; Tabbert et al., 2011).

In sum, instruction of human participants (about the CS/US con-
tingencies) critically determines the process that is probed within a fear
conditioning protocol (i.e., learning from direct experiences vs. ex-
pression of instructed associations). Since instructions are never part of
experiments in rodents, these procedures in humans needs to be criti-
cally examined (type and timing of instructions) when comparing and
interpreting results across species (Fig. 1)

2.5. Timing of experimental phases

The timing of extinction training with respect to acquisition training
does matter, as both associative learning processes require synaptic

(across hours) and systemic (across days) consolidation processes to
enable long-term memory storage (for a review see for example Baldi
and Bucherelli, 2015; Johansen et al., 2011; McGaugh, 2000; Orsini and
Maren, 2012).

The time-delay between acquisition and extinction training however
typically differs between studies in humans and rodents. While animal
experiments often separate acquisition and extinction training by days
(delayed extinction), it is more common in human research to use im-
mediate extinction protocols, i.e., extinction training that follows directly
after acquisition training. Research in rodents and humans has shown
that immediate extinction training interferes with consolidation of the
previously acquired CS/US association memory (Chang et al., 2011;
Golkar et al., 2013; Maren and Chang, 2006; Merz et al., 2016; Myers
et al., 2006; Norrholm et al., 2008; for an overview see Maren, 2014,
but see Kim and Richardson, 2009; Schiller et al., 2008). Interestingly,
such interference was found in rats when extinction either followed
directly after acquisition training (without a gap) or if both phases were
separated by a 15min gap (Totty et al., 2019). This finding is opposed
by a study in humans, revealing that a short break (10 s as opposed to
no break), which separates acquisition from extinction training, re-
duced interference between acquisition and extinction training
(Dunsmoor et al., 2018). Hence, gaps between acquisition and extinc-
tion training in rodents and humans might be not directly comparable,
probably due to a higher stress level after acquisition training in rats
(Totty et al., 2019).

Likewise, retrieval tests that probe reinstatement or renewal of CRs
typically take place on separate experimental days in rodents, but often
occur immediately after extinction training in human experiments (for
an overview see Lonsdorf et al., 2017). The time point of retrieval
testing, relative to extinction training, however, has an impact on the
expression of CRs in rodents (Archbold et al., 2013; Kim and
Richardson, 2009) including differences in the underlying neuronal
matrix (Kitamura et al., 2017; Sacco and Sacchetti, 2010; Vetere et al.,
2017; Wheeler et al., 2013). Hence, it is plausible that extinction
memory processes interfere with retrieval testing, yet this has not been
addressed in human experiments.

In sum, the timing of experimental phases needs to be considered
when comparing results across species. Immediate or delayed extinc-
tion or retrieval procedures may recruit different consolidation ma-
chineries and map onto different real world experiences: Learning
safety (e.g., getting therapeutic treatment) either delayed or following
immediately after salient aversive events.

WHAT TO CONSIDER: PARADIGM
Conditioned Stimuli

• Check if a CS- was employed as a CS+ control (within-subject design), or if a
between group design was chosen.

• In differential protocols: Check how and when the CS- was presented (e.g., prior to
acquisition training or intermixed with the CS+).

• Consider the different (or additional) processes probed by single-cue (mostly
excitatory learning) or differential (excitatory and inhibitory learning) protocols.

Context

• Check how “context” is defined. In rodents, contexts are usually defined as
different chambers (which might include change at multisensory level such as
visual, olfactory and tactile stimuli), whereas contexts in human experiment are
often operationalized by different visual stimuli.

• Check if changes in visual features (e.g., background screen) in human experiments
are used for contextual modulation. Even subtle, unintended, changes can impact
contextual gating of CRs.

Unconditioned Stimuli

• Check the sensory properties of the US (electrical stimulation, loud noise or
perhaps species-specific naturalistic stimulus). Shock USs are typically applied to
the feet in animals and the forearm, finger, or hand in humans. Despite sensory
differences this US type is considered to generate a comparable nociceptive input
across species.

• Check the US intensity in animal and human experiments. Moderate US intensities
that are associated with discriminative learning in animals (check freezing
responses to the CS+ as compared to the CS- or context) may be more comparable
to human procedures. High US intensities may induce generalization of CRs (to the
context or CS-) and are usually (on average) not employed in experiments with
human volunteers.
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• Check the calibration procedure in experiments involving human volunteers.
Calibration of the US intensity prior to the experiment can be considered a signaled
pre-exposure to the US. Hence, human participants are not naïve to the intensity
and imminence of the US during fear conditioning experiments.

Instructions

• Check if human participants have received instructions about the CS/US
contingencies and changes thereof (and in what detail). Human experiments, in
which participants receive minimal or no instructions (i.e., learning depends
mainly on experiences) more closely resemble animal experiments.

Timing of experimental phases

• Check timing between acquisition training, extinction training and retrieval test
phases. Animal research often follows a ‘delayed’ schedule with a day to weeks
between the different phases, thus allowing for long-term consolidation processes
to take place. Human experiments use “immediate” or (less often) “delayed”
schedules. Even short gaps (10 s) might alter memory processes that are initiated
by acquisition and extinction training in humans (as compared to no gaps).

3. Outcome measures

Conditioned responses can be examined across species on different
levels of analysis, which encompass behavioural and physiological,
including neurophysiological, responses. Additionally, experiments in
humans allow for studying verbal reports of subjective emotional ex-
periences, such as fear, distress, and (US) expectations. These different
response levels reflect different defensive processes (Anderson and

Adolphs, 2014; Bechara et al., 1995; Lang et al., 2000; LeDoux, 2012;
LeDoux and Pine, 2016) and thus do not necessarily converge (for a
discussion see Lonsdorf et al., 2017). As a consequence, research across
species needs to carefully consider the processes that are reflected by
these measurements employed within each species.

Within the following paragraphs, we introduce the most commonly
used behavioural and physiological outcome measures for fear con-
ditioning studies that have been employed in both, rodents and hu-
mans. We have excluded measures of neural activity here, since com-
prehensive translational reviews on neural systems that mediate the
acquisition and extinction of CRs in rodents and humans exist (Delgado
et al., 2006; Gunaydin et al., 2014; Johansen et al., 2011; LeDoux,
2012; LeDoux and Daw, 2018; Maren, 2001; Maren and Quirk, 2004;
Milad and Quirk, 2012; Parsons and Ressler, 2013; Tovote et al., 2015 ;
see Sevenster et al., 2018 for a recent review of advances and challenges
that results from this cross-species research). In general, the techniques
to record neural activity usually differ substantially between species,
with respect to the level of detail and invasiveness, for example, in-
tracranial single cell recordings in animals vs. local field potentials and
hemodynamic systems in humans. Recent studies in rodents, however,
have examined hemodynamic responses (by fMRI) during retrieval test
(Brydges et al., 2013; Harris et al., 2016, 2015). This dependent mea-
sure is commonly used to investigate neurobiological mechanisms of
fear conditioning in humans and might help to bridge neural substrate
across species in the future. This promising example for translational
research, however, highlights the constraints of methodological differ-
ences between species. In particular, rodents in the aforementioned
experiments had to be extensively habituated to the fMRI environment
across several days and were restrained during testing, whereas humans
can be naïve to fMRI environment before acquisition training and are
not restrained, but instructed to minimize their movement.

The following paragraphs provide cross-species comparisons of de-
pendent measures that are used in both species (cf. Fig. 2).

3.1. Fear-potentiated startle

The acoustic startle response has been widely used as an outcome
measure in fear conditioning studies in both rodents and humans (Fendt
and Fanselow, 1999). Startle responses that are elicited for example by
a sudden, loud noise (so called startle probe) include the contraction of
facial, neck and skeletal muscles, resulting in eye-lid-closure, and a
disruption of on-going behaviours to protect the organism from a po-
tential threat (Landis et al., 1939).

Startle responses in fear conditioning experiments in both humans
and rodents are commonly elicited by short acoustic stimuli [e.g.,
20–90ms white noise, typically with intensities between 90–105 dB (A)
and a steep rise/fall time (0–2ms)] presented via speakers (in rodents)
or headphones (majority of studies in humans).

In both species, startle response amplitudes can be modulated by
different internal and external variables, resulting in a decrease or in-
crease from a non-zero baseline (Fendt and Koch, 2013). As such, startle
responses increase (compared to baseline) in response to threat

Fig. 1. Schematic illustration depicting key elements within an exemplified cued fear conditioning protocol in rodents (left) and humans (right). CS= conditioned
stimulus, US= unconditioned stimulus.

Fig. 2. Schematic illustration of outcome measures in (a) freely moving animals
(left), restrained animals (right), (b) humans in sitting positions (left) and on a
stabilometric platform (right). R= reference electrode.
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predicting CS+ and decrease to conditions that are safe (Gerber et al.,
2014; Hamm et al., 1993). The startle potentiation during anticipation
or exposure to conditioned and unconditioned threats (i.e., CSs and
USs) in rodents (Davis et al., 1997) and humans (Grillon, 2002; Grillon
and Baas, 2003; Hamm and Weike, 2005; Norrholm et al., 2006, 2011,
2014) is called fear-potentiated startle (FPS). Experiments in both, ro-
dents and humans, require habituation of startle responses to the
acoustic probe prior to acquisition training to observe FPS.

In rats (Brown et al., 1951) and mice (Daldrup et al., 2015; Falls
et al., 1997; Falls, 2002) FPS is usually indexed by a whole body re-
sponse (i.e., whole-body startle), measured by automatic procedures
using startle chambers (plexiglas cylinders positioned on a stabilimeter,
see Fig. 2) or motion-sensitive platforms (unrestraint behaviour of
freely moving animals). Startle responses in rodents are not mono-
tonically related to US intensity, as is the case for freezing responses
(Davis and Astrachan, 1978). Mice exhibit less pronounced and more
variant startle responses compared to rats (Lauer et al., 2017; Paylor
and Crawley, 1997) and FPS is less commonly used in mice (but see for
example: Daldrup et al., 2015; Falls, 2002; Smith et al., 2011).

In humans, the eye-blink component of the startle reflex is measured
through recording of electromyographic (EMG) activity measuring the
contraction of the orbicularis oculi muscle (Landis et al., 1939, see
Fig. 2) - the most reliable component of the startle response in humans
(Koch, 1999).

Because the eye-blink startle response is a component of the whole
body startle, it is assumed that both share a common neurobiological
pathway (Koch, 1999). Primary and modulatory neuroanatomical and
biochemical circuits are well studied in rodents (primarily in rats, e.g.,
Koch, 1999; Lauer et al., 2017 and non-human primates, e.g., Davis
et al., 2008; Winslow et al., 2002). In humans, however, studies on the
neurobiological pathways of startle responses have just recently
emerged, enabled by new technical advances allowing to combine EMG
and fMRI recordings (Kuhn et al., 2019 Lindner et al., 2015). These
studies hold promise to provide the yet missing link for a translational
understanding on the neural basis of startle responses.

It should be kept in mind that startle responses are responses that
are triggered by the presentation of (potentially mildly aversive) stimuli
(i.e., startle probes). As such, the startle probe has been conceptualized
as an additional aversive stimulus (Lissek et al., 2005a, 2005b) and has
been shown to impact on the learning process during acquisition
training in humans (e.g., as examined in SCRs by Sjouwerman et al.,
2016 and pupillometry by de Haan et al., 2018).

In conclusion, FPS (measured as whole body startle in rodents and
as eye-blink startle responses in humans) represents a cross-species
measurement of defensive CRs (Davis et al., 2010; Fendt and Koch,
2013; Grillon and Baas, 2003).

3.2. Freezing and freezing-like behaviour

In rodent experiments, changes in the animals’ observable beha-
viour in response to the CSs are common outcome measures indexing
conditioned responding. The most common behavioural index in fear
conditioning protocols is freezing, though the CRs also include changes
in risk-assessment, flight, grooming, exploration, rearing, and quies-
cence (see Remmes et al., 2016). Freezing behaviour is a defensive
response elicited by both conditioned and unconditioned threats
(Blanchard, 2017; Hagenaars et al., 2014; Roelofs, 2017; Volchan et al.,
2017). It is defined as the absence of movement (except for breathing)
with increased muscle tension that demarks attentive immobility to-
wards distal threats or immobility under imminent threat, if escape is
not possible (Blanchard et al., 1989). Freezing is commonly reported in
rodents as the percentage of a defined time-window (e.g., CS pre-
sentation or time freezing in the CXT) within the animal exhibited
freezing behaviour. While freezing is the typically recorded response to
conditioned and unconditioned threats in mice and rats, it is only one
response amongst a rich behavioural repertoire of defensive responding

in animals (Bolles, 1970; Perusini and Fanselow, 2015). Thus, the lack
of freezing does not necessarily indicate the lack of conditioned fear,
since exaggerated fear responding may result in panic-like flight be-
haviour (Fadok et al., 2017; Tovote et al., 2016).

In human fear conditioning experiments, naturally occurring be-
havioural responses are commonly not examined (or possible), because
participants are usually tested in a sitting position in front of computer
screens or positioned in the MRI scanner. Moreover, several outcome
measures (e.g., physiological signals and neural measures) demand
participants to refrain from body movements. Recent studies in hu-
mans, however, have started to measure behavioural responses to
threats, which might mirror freezing. In particular, decreased postural
body sway on a stabilometric force platform was found during antici-
pation of threats (Azevedo et al., 2005; Bastos et al., 2016; Gladwin
et al., 2016; Roelofs et al., 2010; Stins et al., 2011; for reviews see
Blanchard, 2017; Hagenaars et al., 2014; Roelofs, 2017; Volchan et al.,
2017), including anticipation of electric shock USs (Gladwin et al.,
2016) and presentations of CSs (Van Ast and Roelofs, personal com-
munication). This initial evidence that anticipation of threats can be
examined by freezing-like behaviour through means of body sway in
humans is underlined by bradycardic changes in the heart rate (cf. next
chapter) during reduced body sway (Azevedo et al., 2005; Bastos et al.,
2016; Gladwin et al., 2016) which mirrors simultaneously occurring
freezing and bradycardia in rodents (Vianna and Carrive, 2005; Walker
and Carrive, 2003).

In general, when comparing “behaviour” across species within fear
conditioning experiments, it should be noted that fear conditioning
protocols in rodents often allow for expression of a range of defensive
responses, while behaviour in human participants is commonly re-
stricted to key presses or body sway in fixed positions. Moreover,
human participants are aware of the possibility to ultimately dis-
continue and hence escape from the aversive testing situation, which
furthermore impacts the choice of defensive responses that can be
measured in human experiments.

In sum, freezing behaviour in rodents is a common outcome mea-
sure in fear conditioning experiments and studies on body movements
in humans, as a measure of freezing-like responses, have recently
emerged. These new developments in humans hold the promise to de-
velop into a translational measure of defensive behaviours that can be
employed in future fear conditioning studies.

3.3. Heart rate

Alterations of heart rate in responses to CSs and CTXs have been
described across species as an index of psychophysiological arousal.
Both, deceleration and acceleration have been observed due to si-
multaneous parasympathetic and sympathetic involvement in the CR
(mice: Stiedl and Spiess, 1997; Stiedl et al., 2004, rats: Iwata and
LeDoux, 1988; Roozendaal et al., 1991, humans: Graham and Clifton,
1966; Hamm et al., 1993; Headrick and Graham, 1969; Lipp and Vaitl,
1990; Öhman and Dimberg, 1978; for detailed information on heart
rate measurement in rodents see Morgan and Paolini, 2012; Stiedl et al.,
2009 and in humans see Jennings et al., 1981; Lonsdorf et al., 2017).
Measurements in humans are non-invasive and feasible in different
testing environments (e.g., in front of computer screens or during fMRI
scanning). In rodents, heart rate measurements require implantation of
telemetric devices (Carrive, 2000; Dielenberg and McGregor, 2001) in
order to avoid restraining the animal during measurements, which has
been used in earlier studies. Restraining of the animal, can elicit stress
responses itself (Iwata and LeDoux, 1988), which impacts on the
changes in the heart rate to the CS (as discussed by Iwata and LeDoux,
1988): higher basal heart rate (often in restrained animals) favours
deceleration, whereas lower basal rates are often followed by accel-
eration. In humans, the divergence between acceleration and decel-
eration has been related to different CS processing. Heart rate accel-
eration during acquisition training was linked to affective responses
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(paralleled by enhanced startle potentiation and subjective experiences
of unpleasantness) and preparation of avoidance, whereas deceleration
was associated with the learned anticipation of threats (Hamm et al.,
1993; Hamm and Vaitl, 1996; Hodes et al., 1985; Roelofs, 2017).

Taken together, heart rate analysis offers a cross-species measure-
ment of the sympathetic and parasympathetic part of the CR. When
interpreting acceleration and deceleration, the basal levels and the
specific operationalization of the measurement in rodents (i.e., re-
straining vs. free-moving) needs to be considered.

WHAT TO CONSIDER: OUTCOME MEASURES
Fear potentiated startle

• Consider that startle responses are measured as whole body startle in rodents and
as the eye-blink component in humans.

• Consider that startle responses are triggered (in contrast to continuous measures of
freezing and SCRs, for example) by mildly aversive stimuli, which delays learning
about the CS/US association.

Freezing and freezing-like behaviour

• Check if freezing behaviour is the only behavioural measure of CRs in rodents,
since it accounts for only one part of a complex defensive response pattern. In
humans, reduced body sway (as a measure of freezing-like behaviour) has
recently been employed to examine defensive responses in anticipation of threats.

• Check how expression of behavioural responses is defined in the experiment. The
conditioning apparatus used in rodents often allows (relatively) free movement in a
chamber, but is commonly restricted in humans (position in front of a computer
screen).

Heart rate

• Check if animals were restrained to measure heart rate (in earlier studies) or if
devices were used that allow free movements.

• Consider that sympathetic and parasympathetic signals interact in heart-rate
measurements and thus might reflect different processes.

4. Individual differences

Fear conditioning research in both rodents and humans has gen-
erally focused on investigating common principles and mechanisms.
This approach has generated invaluable knowledge on the canonical
neural, behavioural, physiological and cellular mechanisms underlying
fear and anxiety, which has provided a necessary framework for the
study of individual differences. Heterogeneity within a population,
however, was typically regarded as ‘residual variance’ in this context in
both species. But a limited focus on average mechanisms deprives us
from gaining crucial insights into the mechanisms beyond the average
(Kosslyn et al., 2002) and may bias the field through wrong conclusions
because the (artificial) sample mean may not describe any individual
very well (Hedge et al., 2018; Kosslyn et al., 2002; Lonsdorf and Merz,
2017).

Hence, systematic investigations of differences between individuals
(i.e., inter-individual differences) within fear conditioning experiments
provides a strategy to infer on mechanisms beyond the average. In the
following, we briefly outline and summarize some of the major sources
of inter-individual differences in fear conditioning experiments and
emphasize cross-species translational gaps with respect to methodolo-
gical (i.e., procedural and analytical) issues.

4.1. Specific sources of individual differences across species

A plethora of specific sources of possible individual difference fac-
tors has been identified in rodents and humans. The most obvious
factors that differ between individuals include sex and age - as a choice
on specific inclusion or exclusion criteria regarding these factors is
mandatory prior to each experiment, across species. Additional ex-
amples of factors impacting on conditioned responding include various
stressors and life history events, genetic variations or personality
characteristics in humans (for review see Lonsdorf and Merz, 2017) and
rodents (for review see Holmes and Singewald, 2013).

Sex: Biological sex, varying sex hormone concentrations over the
cycle as well as hormonal contraceptives impact on threat learning and
extinction processes in humans (Glover et al., 2015; Merz et al., 2018)

and rodents (Cover et al., 2014; Lebron-Milad and Milad, 2012). While
rodent work has revealed important sex differences in fear conditioning
(e.g., Gruene et al., 2015a, b; Maren et al., 1994; Milad et al., 2009a,
2009b; Zeidan et al., 2011), experiments are commonly conducted in
males only (Cover et al., 2014; Lebron-Milad and Milad, 2012). These
sex differences are often used as an explanation for excluding female
animals in experiments, in order to reduce variance in the results. Re-
sults derived from male populations are, however, often not general-
izable to female individuals (Cahill, 2012), which is problematic from a
translational perspective: Human samples in fear conditioning are often
mixed sex samples (Lonsdorf and Merz, 2017) and women are over-
represented in clinical populations that suffer from pathological re-
sponses to threats in anxiety related disorders (Breslau, 2002; Cover
et al., 2014; Reed and Wittchen, 1998). Recent policies by the National
Institute of Health call for inclusion of female animals in future ex-
periments (Clayton and Collins, 2014), which will likely affect gender-
distribution in fear conditioning research. These mixed sex samples in
rodents would get closer to sex distributions in human experiments
(women are slightly overrepresented; cf. Lonsdorf and Merz, 2017). Yet,
even though mixed samples are investigated in human experiments, sex
differences are often not explicitly considered.

Despite being often neglected, there are specific translational chal-
lenges that need to be considered when comparing work between ro-
dents and humans. First, when comparing female individuals, the
temporal dynamics of sex hormone concentrations over the course of
the estrus cycle (4 days) in rodents and menstrual cycle (28 days) in
humans matter: In multiple-day experiments, the faster fluctuation of
hormones in rodents inevitably results in different sex hormone levels
within different experimental phases. Second, differences across species
further include the common use of hormonal contraceptives in women
(Merz et al., 2018). Third, the impact of the sex of the experimenter
(who has contact to the human participants and rodents during testing)
has hitherto not been addressed in fear conditioning research, although
there is evidence for these participant-experimenter interactions in
other stress related tasks (for a discussion of general effect in humans
see Chapman et al., 2018 and experimenter-animal interaction see
Bohlen et al., 2014; Sorge et al., 2014).

Age and development: In rodent work, developmental studies re-
vealed evidence for acquisition of CRs already at an early age
(Richardson and Fan, 2002) whereas extinction learning seems to
emerge only later in life – possibly mirroring the development of in-
volved prefrontal brain regions (Kim and Richardson, 2010; Shechner
et al., 2014). Notably, fear conditioning studies in adolescent or even
younger individuals are rare in both, rodents (Shechner et al., 2014)
and humans (for a review see Lonsdorf and Merz, 2017). Typically,
rodents are tested during adulthood (i.e., 2–6 months postpartum),
which corresponds to the typical age of participants in human fear
conditioning studies (i.e., 21–25 years; cf. Lonsdorf and Merz, 2017;
Sengupta, 2012; Spear, 2000; see www.translatingtime.org/translate
for a tool to translate age between different species). However, directly
translating age between rodents and humans represents a challenge,
since adolescence is characterized by different features across species
and changes in sex hormones across developmental phases (e.g., pub-
erty, pregnancy or menopause) are not necessarily comparable between
species. Yet, these difference are also not well studied (e.g., Milligan-
Saville and Graham, 2016).

Another translational challenge when investigating young in-
dividuals are ethical considerations regarding the employed US:
Electrical stimulations, as usually employed in rodents and adult hu-
mans, cannot be used in children. Instead, air-puffs or loud and aversive
sounds or screams are typically implemented (Shechner et al., 2014).
Thus, despite differences in US intensities in general (see above), US
types and intensities diverge between rodents and humans in particular
when young individuals are studied. For a comprehensive review of
methodological consideration of fear conditioning protocols in devel-
oping rodents we refer to Cowan and Richardson, 2018.
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Stressors: The investigation of individual differences with respect
to stressors poses a challenge for translational attempts mostly due to
ethical constraints. First, acute stressors that are experimentally in-
duced differ substantially between species. In rodents, this typically
involves potentially life-threatening events (i.e., restraint stress, un-
derwater trauma, tail shocks, social defeat, exposure to cat or fox
odours; Schöner et al., 2017). In humans, in turn, acute stress typically
involves physiological challenges (e.g., cold-pressor task) or social as
well as self-evaluative threat (e.g., Trier Social Stress Test; Kirschbaum
et al., 1993; see Dickerson and Kemeny, 2004 for a meta-analysis).
However, for ethical reasons, these challenges neither cause physical
harm, nor are they potentially life-threatening. Importantly, exposure
to natural or man-made disasters, which are potentially life threatening
(but not under experimental control), have been conceptualized as
stressors (Luo et al., 2012; Steudte et al., 2011). Second, stressors in
early life can be investigated in rodents under experimental conditions
(Pryce et al., 2005), including experimentally generated life-histories
(Bodden et al., 2017; Remmes et al., 2016; Tsoory et al., 2007). In
human research, in contrast, the assessment of critical life events in fear
conditioning (McLaughlin et al., 2016; Scharfenort et al., 2016) is often
based on retrospective questionnaires such as the Childhood Trauma
Questionnaire (Bernstein et al., 2003). Interview-based measures or
ascertainment of events through official records -which could be more
valid measures of such events- might provide further insights in future
fear conditioning studies (Li et al., 2016; Monroe, 2008). Third, also
chronic stress can be experimentally manipulated in rodents (Hoffman
et al., 2015; Maren and Holmes, 2016), yet this is again not applicable
in humans due to ethical reasons.

Despite these different methodological approaches between species
to induce stress, the resulting increases in relevant stress hormones may
provide similar read-outs. For example, biological markers for chroni-
cally elevated stress hormones, such as the assessment of hair cortisol
concentrations (Stalder et al., 2017). Such biological markers, in con-
trast to questionnaires, might serve as a translational tool, to assess
endocrine responses retrospectively over longer periods and across
species (Yu et al., 2015). It should, however, be considered that the
interaction between stress-related neurotransmission and neuromodu-
lation (e.g. by monoamines and hormones, respectively) with emotional
arousal evoked by fear conditioning protocols might affect learning and
memory processes in a non-linear (e.g., inverted-U shape) fashion
(Baldi and Bucherelli, 2005).

Genetic variation: Both human (Hettema et al., 2003; Merrill et al.,
1999) and animal studies (Royce, 1972) report considerable influence
of genetic variation on inter-individual variability in the ability to ac-
quire and extinguish CRs. More precisely, one third of the variance in
human fear conditioning (Hettema et al., 2003) has been attributed to
genetic factors.

In humans, the majority of studies have investigated associations of
candidate variants (i.e., polymorphisms) of a single biologically plau-
sible candidate gene (for reviews see Lonsdorf and Kalisch, 2011;
Sumner et al., 2016) in association with fear conditioning processes.
This approach has been criticized (e.g., Kendler, 2013), as it depends on
knowledge about the pathophysiology underlying the disease/trait
studied. More recently, genome-wide association studies are emerging
in the field of (clinical) anxiety research, which provides novel candi-
dates for more targeted investigations in experimental fear conditioning
research (for example Deckert et al., 2017; Lueken et al., 2017).

In rodents in turn, genetic variation can be experimentally induced
(e.g., gene knock-out/in, selective breeding), which allows to modify
transmitter pathways that are also affected by naturally occurring ge-
netic variants in humans (e.g., Bilkei-Gorzo et al., 2012). Importantly,
the underlying biological alterations of single polymorphisms and
knock-out/in procedures are not necessarily corresponding. Ap-
proaches, which mimic the genetic variant in humans by genetic
modification in rodents might provide a closer match (e.g., Dincheva
et al., 2015; Soliman et al., 2010). Recently developed advances in

genome editing techniques (CRISPR/Cas; Jinek et al., 2012) hold the
promise to facilitate such cross-species translation, e.g., by ‘generating
humanized mice’.

Personality factors: Personality traits such as trait anxiety, intol-
erance of uncertainty or neuroticism have been linked to different
processes in fear conditioning paradigms in humans (for a review:
Lonsdorf and Merz, 2017). In rodents, equivalent concepts can be
subsumed under the umbrella term ‘animal personality’ (for reviews:
Réale et al., 2010; Stamps and Groothuis, 2010), which has however
rarely been applied to the field of fear conditioning to date (e.g., Borta
et al., 2006; Walker et al., 2008). A major translational challenge with
respect to personality traits comprises the question of how to translate
specific personality facets from humans to rodents (e.g., con-
scientiousness or intolerance of uncertainty). A second translational
challenge represents assessment of ‘personality’ across species. While
personality traits in humans are typically assessed by means of self-
report questionnaires requiring some introspection capability, animal
‘personalities’ are derived from behavioural indices (i.e., behaviour in
the open field, the elevated plus maze or social interactions). To date, it
remains unclear if ‘personality characteristics’ capture comparable
concepts across species despite differences in assessment.

In sum, individual differences in fear conditioning experiments need
to be carefully checked for their particular instantiation (e.g., which
type of stressor was used?) when compared across species. Moreover,
comparability of results could profit by reporting effects of individual
differences like effects of sex in mixed samples (even if this effect is not
at focus) or sex of the experimenter.

4.2. Methodological considerations for research on individual differences –
cross-species translational gaps

The investigation of individual differences in both species requires
specifically tailored methodological considerations with respect to se-
lection of individuals, experimental design, data processing and statis-
tics (for a discussion of the challenges in rodents see Richter and Hintze,
2019 and for the human field see Lonsdorf and Merz, 2017). Of note,
sample selection, experimental design choices and data analysis stra-
tegies developed to investigate general mechanisms might not be ap-
propriate for the investigation of sample heterogeneity (Hedge et al.,
2018; Lonsdorf and Merz, 2017). In the following, a non-exhaustive
number of experimental and data analytical challenges are discussed
focusing on cross-species translation in fear conditioning research.

In most studies in humans and rodents alike, individuals are divided
into subgroups based on study-specific, often cut-off-based, criteria.
Importantly however, in humans, grouping (by means of e.g., median
split or selection of extreme groups) is mostly based on individual dif-
ference variables (e.g., scores in questionnaires; reviewed in Lonsdorf
and Merz, 2017) rather than performance in fear conditioning, extinc-
tion, retrieval or return of fear. Hence, grouping of participants is based
on the factor of main interest (e.g., trait anxiety) and task-performance
is usually treated as continuous variable.

In rodents in turn, grouping is often based on observed behaviour in
fear conditioning experiments (Bush et al., 2007; Shumake et al., 2014)
and study-specific mean-based cut-off criteria are employed - such as
the upper and lower end of the distribution (Bush et al., 2007; Reznikov
et al., 2015; Shumake et al., 2018; Walker et al., 2008), number of trials
taken to reach a predefined extinction criterion (King et al., 2017) or
data driven cut-off criteria in a probabilistic model (Shumake et al.,
2018).

Critically, these cut-off criteria in human and rodent studies alike
are mostly study-specific and hence, comparability of individuals la-
belled as for instance ‘slow extinction’ or ‘high extinction phenotype’
across studies is not always straightforward. Likewise, there have been
some attempts in rodents to classify an individual as ‘affected’ or ‘un-
affected’ based on cut-off criteria on a range of behavioural read-outs
(Ardi et al., 2016; Cohen et al., 2003; Walker et al., 2008) in order to
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mimic psychiatric procedures as employed in humans. The validity of
psychiatric nosology in humans, however, has recently been challenged
(Cuthbert and Insel, 2013; Hamm et al., 2016; Marquand et al., 2016)
based on the massive within-diagnosis heterogeneity (Galatzer-Levy
and Bryant, 2013). This gives such a backwards translational approach
most likely limited promise.

Another methodological challenge for research on individual dif-
ference is the fact that fear conditioning protocols often employ ‘strong
experimental situations’ (Lissek et al., 2006) and hence leave limited
room for the manifestation of individual differences. This theoretical
consideration has very recently been empirically demonstrated for
seven classic tasks employed in cognitive neuroscience (Hedge et al.,
2018). Importantly, the strength of the experimental situation may not
be comparable across species in typical experimental set-ups.

An additional translational challenge exists with regard to differ-
ences in sample selection in rodents and humans. In general, human
participants and laboratory animals in fear conditioning research are
often homogenous groups. In the human field, work is primarily based
on student samples between the ages of 21 and 25 (for review see
Lonsdorf and Merz, 2017) without any history of psychiatric disorders
(often excluding participants “at risk” for anxiety disorders and over-
sampling resilient individuals), which limits generalizability of these
findings within a homogenous and possibly high functioning set of in-
dividuals to the general population (Henrich et al., 2010; Lonsdorf and
Merz, 2017). Similarly, experiments in rodents typically avoid hetero-
geneous samples to reduce variability within experiments and thereby
to increase power. As such, studies are typically performed in animals
of the same inbred strain tested at exactly the same age and housed in
the same environmental conditions (e.g., cage size, environmental en-
richment, temperature, humidity, light intensity, time of day, etc.) .
Consequently, recruitment strategies that focus on individual differ-
ences should be adjusted to induce systematic heterogeneity in humans
(e.g., recruitment from the general population). Such a ‘systematic
heterogenization ‘of the study sample would follow recent discussions
in the rodent field that call for environmental or experimental ‘het-
erogenization’ rather than ‘standardization’ in order to produce robust
findings (Richter, 2017; Richter et al., 2010, 2009; Voelkl et al., 2018).
Studies on individual differences in fear conditioning research in ro-
dents already included some (unsystematic) heterogeneity by using
outbred rats (Bush, Sotres-Bayon, & LeDoux, 2007; Reznikov et al.,
2015; Shumake et al., 2018; Walker et al., 2008) and tried to maximize
(genetic) diversity in the sample by including crossing of rats that were
provided by different suppliers (Shumake et al., 2018). To date, how-
ever, heterogenization with respect to sample selection is rarely applied
in human research (Lonsdorf and Merz, 2017). Maximizing hetero-
geneity in a systematic way in the study population is thereby not only
key for the investigation of individual differences in general, but can
also be expected to facilitate generalization, replication and translation
of results (Richter et al., 2009). Thorough statistical calculation of
sample sizes and analytic strategies are further essential to align these
efforts of study sample heterogenization with 1) the ethical point of
view that experiments should be conducted in the smallest groups
needed and 2) to provide sufficient power for statistical analyses
(Button et al., 2013; Demétrio et al., 2013; Worp et al., 2010).

In sum, to foster research on individual differences across species
and make study populations more representative at the same time, re-
searchers may consider allowing more heterogeneous samples, employ
dimensional characterisations rather than arbitrary groups and might
re-design protocols tailored to allowing for the manifestation of in-
dividual differences.

4.3. Clinical perspective

Fear conditioning is a tool for the cross-species examination of basic
affective learning mechanisms that shape adaptive, defensive responses
against acute or imminent threats. Furthermore, in both, rodents and

healthy human volunteers, fear conditioning is being used to study
processes that contribute to maladaptive responses (for example in
patients that suffer from anxiety-related disorders) as well as to offer
insights on how to treat these disorders (Davis et al., 2006; Griebel and
Holmes, 2013; Maren et al., 2013; Milad and Quirk, 2012; Morrison and
Ressler, 2013; Singewald et al., 2015; Zuj and Norrholm, 2019). In
particular, the development of pharmacological tools to augment
therapies for anxiety related disorders rely on detailed mechanistic
knowledge from translational work in rodents and humans.

One example is the enhancement of exposure therapy by aug-
menting NMDA-receptor activity via administration of d-cycloserine.
The clinical application was based on initial findings in fear con-
ditioning experiments (Davis et al., 2006; Ledgerwood et al., 2003;
Ressler et al., 2004), and the efficiency and specificity was further
guided by examination of extinction learning processes in basic fear
conditioning experiments (Hofmann et al., 2015; Mataix-Cols et al.,
2017; Norberg et al., 2008; Smits et al., 2013).

Similarly, the blockade of (nor)adrenaline transmission by propra-
nolol has been examined as a prevention against the development of
post-traumatic stress disorder (PTSD), based on the modulatory effect
of noradrenaline on the acquisition and extinction of conditioned fear
responses in rodents (Berlau and McGaugh, 2006; Fitzgerald et al.,
2015). Yet, several controlled studies in humans revealed no effect of
propranolol administration directly after trauma (McGhee et al., 2009;
Nugent et al., 2010; Stein et al., 2007). Future mechanistic studies
might provide insights into how noradrenaline modulation (maybe in
combination with safety learning procedures) can be used to treat PTSD
(Giustino et al., 2016; Pitman et al., 2002).

However, the inferences drawn from fear conditioning experiments
will probably only shed light on partial processes that contribute to
psychopathology, as for example avoidance tendencies are not assessed
(Beckers et al., 2013). As such, in some cases promising findings from
experimental fear conditioning studies cannot directly be applied in the
clinic (e.g., Maples-Keller et al., 2019).

Our aim is to improve the understanding of general aversive
learning mechanisms by fostering cross-species comparability. In the
long run, we aspire that our methodological considerations of basic
mechanisms inspire discussion about the methodological challenges of
fear conditioning experiments to allow drawing valid inferences about
psychopathology.

5. General discussion

Our aim in this perspective is to provide the missing methodological
considerations on cross-species research in fear conditioning. Thereby,
we address the central question whether the theoretical promises of
translational research can actually be met in practice. To answer this
question, we provide a cross-species comparison of key methodological
elements within protocols in humans and rodents. We further highlight
the implication of these methodological differences for the compar-
ability of procedures between species.

We argue that raising awareness for methodological differences
between species sets the stage for practical guidance to avoid pitfalls
when drawing conclusions from published experiments across species.
Furthermore, we hope to aid designing of experiments that employ
methods for more comparable processes in human participants and
laboratory rodents in fear conditioning protocols. These practical con-
siderations provide the basis of how cross-species translation can actu-
ally work.

However, inherent differences in experimental demands in humans
and rodents make translation of a protocol, in its literal sense, word by
word, often impossible. We argue that alignment of protocols can only
be achieved to a certain degree and we are not advocating for a gold
standard how translational protocols should look like. Hence, simple
alignment of superficial methodological details will not promote
translational results. Instead, we are promoting to consider procedural
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and methodological differences across species to guide the interpreta-
tion and comparison of processes that underlie the results in rodents and
humans. These considerations should ultimately allow for identification
of processes in fear conditioning protocols that are comparable between
humans and rodents. Furthermore, it also sets boundaries for transla-
tion of findings that are derived from procedures that probe divergent
processes. Identification of such procedural and methodological gaps
across species that limit inferences from rodents to humans, or vice
versa, are important. These gaps should not be downplayed, but rather
highlighted with the same emphasis as comparable cross-species me-
chanisms are promoted.

We envision with this perspective to further foster cross-species
exchange that enables new perspectives beyond the methodology that is
commonly used within one species. In our view, learning from practical
insights into research in other species is often helpful to recognize
species-specific pitfalls and to interpret work in other species correctly.
We aspire that our perspective equips researchers with these practical
and methodological considerations across species to ultimately support
the dialog between researchers in translational science and remove
hurdles in designing “tandem-projects” across species.

In sum, we propose to consider translational research as a frame-
work for conceptual rather than identical replications. Our perspective
suggests that such translational research encompasses not only com-
parable processes within humans and rodents, but also place emphasis
on processes that diverge between species. Methodological comparisons
across species provide the basis to evaluate these common and species-
specific processes to guide interpretation of findings across rodent and
human research in order to lay the grounds for successful translational
research.
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