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Neuroscientific research has identified specific brain networks involved in the acquisition of fear memories.
Using functional magnetic resonance imaging to assess changes in resting-state functional connectivity (RSFC)
induced by fear acquisition, single brain regions from these networks have been linked to fear memory
consolidation. However, previous studies merely examined RSFC changes within restricted sets of brain regions
or without a proper control group, leaving our knowledge about fear consolidation outside of traditional fear
networks incomplete. Here, an experimental group of 98 and a control group of 28 individuals, free of self-
reported psychiatric or neurological disorders, participated in a differential fear conditioning paradigm using
visual stimuli and electrical stimulation. Fear responses were quantified by skin conductance responses. RSFC
changes were analyzed across 360 cortical and 16 subcortical brain regions, constituting a total of 70,500
functional connections. Subsequent to fear acquisition, we identified 21 functional connections, involving 35
individual brain regions, that exhibited significant RSFC changes in the experimental compared to the control
group. Importantly, these connections were not restricted to traditional fear networks but also comprised various
frontal, visual, premotor, and somatosensory regions. Overall, our findings highlight the importance of
employing a proper control group and indicate that fear memory consolidation is a complex process that in-
tegrates relevant information across the entire brain. Brain regions recruited for this task presumably depend on
the modality of acquired fear memories, which demands an update regarding the components of established fear
networks.

1. Introduction function but also for developing targeted neural interventions that could

benefit patients suffering from anxiety disorders. However, our under-

The acquisition, maintenance, and extinction of conditioned fear
responses are critical functions that help us to evaluate and differentiate
potential threats and safety signals in the environment [12,60]. Un-
derstanding the neural mechanisms tied to these fear learning processes
is essential not only for advancing our fundamental knowledge of brain

standing of how fear learning affects the brain’s functional connectome
remains limited.

In order to study fear learning under experimental conditions, most
studies employ classical Pavlovian fear conditioning paradigms. Usu-
ally, these experiments involve the repetitive presentation of two neutral
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stimuli (e.g., tones or pictures) of which one is always or partially
reinforced with an aversive stimulus (e.g., an unpleasant electric shock),
also known as the unconditioned stimulus (US). As a consequence, the
former neutral stimuli become conditioned stimuli (CS) and subjects
typically show a conditioned fear response (CR) towards the reinforced
stimulus (CS+) but not the non-reinforced stimulus (CS-). The degree of
CR can be assessed by means of skin conductance responses (SCRs) or
fear ratings for example [50].

The combination of fear acquisition training and neuroimaging
methods such as functional magnetic resonance imaging (fMRI) pro-
vides an opportunity to reveal specific brain areas involved in fear
learning. In humans, respective efforts were able to identify a brain
network comprising hippocampus, amygdala, dorsal anterior cingulate
cortex, ventromedial prefrontal cortex, and insula [58]. This so-called
"fear network" could later be refined by a large-scale meta-analysis of
fMRI studies on fear learning in humans which identified not one but
two complementary brain networks [23]. The first network is consti-
tuted by brain regions that are primarily active during CS+ presentation,
which suggests a strong involvement in the processing of potential
threat. The respective network strongly resembles what has previously
been described as the fear network. In contrast, brain regions from the
second network are highly active in response to CS- presentation. Given
its vital role in processing non-threatening stimuli, the respective
network has been coined the "safety network" [23]. It comprises the
hippocampus, ventromedial prefrontal cortex, lateral orbitofrontal cor-
tex, and posterior cingulate cortex.

Although fear memories are rapidly acquired [67], subsequent off-
line processing known as memory consolidation, is required for shaping
and maintaining a rich and diverse array of fear-related behaviors. One
way to examine fear memory consolidation in humans is to assess brain
activity while the brain is "at rest". Again, this can be achieved by
neuroimaging methods such as fMRI, which are able to quantify
resting-state functional connectivity (RSFC) before and after fear
learning. RSFC is typically defined as the mutual low-frequency fluctu-
ations in activity that occur across two or more brain regions during the
absence of sensory input [21]. However, intrinsic brain activity during
periods of rest may not be devoted exclusively to default-mode pro-
cessing. Alternative perspectives propose that the resting brain actively
and selectively processes previous experiences [57]. Measures of RSFC
are relatively stable across time [10]. However, changes in functional
connectivity following behavioral tasks have been observed, especially
during immediate post-encoding time periods in which initial stages of
memory consolidation are likely to unfold [34]. In addition, RSFC pat-
terns observed shortly after a specific task resemble the expression of
functional connectivity during that task. Such effects have been reported
for motor learning [1,86], visual perceptual learning [30,45], attention
[11], as well as working memory [28], and lexico-semantic cognition
[74].

It has been demonstrated that fear learning processes can alter the
RSFC between specific brain regions from the fear and safety networks.
These include the amygdala, dorsal anterior cingulate cortex, ventro-
medial prefrontal cortex, insula, and hippocampus [16,17,34,76,87].
However, respective studies entail certain methodological and concep-
tual limitations, which require further investigation. First, some studies
did not assess RSFC changes in a control group, restricting their analyses
to a single within-group comparison [34,76,87]. Thus, it cannot be ruled
out that reported RSFC changes were caused by factors other than fear
learning. Second, while most studies conducted functional connectivity
analyses that involved regions from the entire brain, they also employed
pre-defined seed regions such as the amygdala [16,76,87]. This
approach neglects all functional connections that are not part of the
network studied under these a priori assumptions, for example, any
interplay between visual and cingular regions. Due to this lack of un-
restricted whole-brain analyses, it currently remains underexplored
whether fear learning induces RSFC changes outside of the fear and
safety networks. Considering that fear learning often takes place in
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situations that also involve a variety of cognitive, emotional, and social
processes, it is plausible that the fear and safety networks need to
interact closely with other brain networks supporting these functions.

In summary, it has been shown that the differentiation between
threatening and non-threatening stimuli is primarily associated with
activation patterns in two neural networks known as the fear network
and safety networks. Changes in RSFC can be used as a measure to study
consolidation processes after fear acquisition. Despite the complexity of
fear learning, previous fMRI studies from this line of research widely
neglected functional connections outside of the fear and safety net-
works. To address this issue, the study at hand aimed to follow a data
driven and explorative approach without making any a priori assump-
tions regarding the connections or networks to study. Consequentially,
we examined RSFC changes within the whole brain and investigated
RSFC changes between 360 cortical and 16 subcortical brain areas
occurring subsequent to fear acquisition training. We conducted three
analyses that involved a within-group comparison, a correlation analysis
that aimed to associate RSFC changes with the magnitude of CR as
quantified by SCRs, and a between-group comparison. By doing so, we
observed expected RSFC changes in functional connections from the fear
and the safety network. Interestingly, we were also able to identify RSFC
changes in functional connections involving brain regions not included
in the traditional fear and safety networks. Among these were visual,
frontal, premotor, and somatosensory regions, suggesting a complex
integration of information that was likely shaped by the modalities
targeted in our fear acquisition paradigm.

2. Materials and methods
2.1. Participants

For this study, we recruited 165 participants, free of self-reported
psychiatric or neurological disorders. They were randomly assigned to
an experimental group (N = 137), which underwent a fear acquisition
paradigm with electrical stimulation (see 2.2. Fear Acquisition Para-
digm), and a control group (N = 28), to which the same stimuli were
presented but without electrical stimulation. This was done to examine
potential effects of fear acquisition by means of between-group analysis
(see 2.7. Statistical Analysis). In total, 39 participants from the experi-
mental group had to be excluded due to various reasons. Twenty-seven
participants were classified as "non-responders" since they did not show
valid SCRs in reaction to any of the US presentations (at least 0.05 uS)
[49]. Twelve participants reported a CS-/US contingency that was equal
to or larger than the reported CS+ /US contingency, indicating absent
contingency awareness [85]. Hence, all imaging analyses were carried
out with data from the remaining 126 participants (76 women).

The final sample, comprising the experimental as well as the control
group, had an age range from 18 to 26 years (M = 21.81, SD = 2.12). We
did not observe significant age differences between male and female
participants (t(124) = 1.426, p = .157). The experimental group
included 98 participants (55 women) with a mean age of 21.94 years (SD
= 2.00) and the control group included 28 participants (21 women) with
a mean age of 21.36 years (SD = 2.48). Both groups did not differ
significantly with regard to age (t(124) = 1.284, p = .202) or sex (Xz(l,
N = 126) = 3.242, p = .072). We also did not observe statistically sig-
nificant age differences between male and female participants within the
experimental (t(96) = 1.187, p = .238) or the control group (t
(26) = 0.433, p = .669).

The final sample was also rather homogenous with respect to race
and ethnicity. Since genetic data were collected for analyses unrelated to
the study at hand, it had to be ensured that the vast majority of partic-
ipants was of European descent. To this end, participants were asked
about the birthplace of their grandparents during screening. On average,
participants reported that three out of their four grandparents were born
in Germany. This ratio did not differ between the experimental (73.6 %)
and the control (75.9 %) group.
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In addition to genetic data, psychometric data on trait anxiety and
information processing capacity were also collected as part of a different
project. Trait anxiety was measured via the State-Trait Anxiety In-
ventory [43] and did not differ between the experimental (M = 37.4)
and control (M = 38.4) group (t(119) = -0.637, p = 0.525). Information
processing capacity was captured via the Zahlen-Verbindungs-Test [64],
a test of perceptual speed similar to the Trail Making Test. Again, results
did not show significant differences between the experimental (M =
56.3 s) and control (M = 56.2 s) group (t(121)) = 0.017, p = 0.987).

In order to control for any potential effects caused by handedness,
only right-handed individuals were recruited, as measured by the
Edinburgh Handedness Inventory [63]. All participants had normal or
corrected-to-normal vision and were able to understand the instructions
given to them orally or in writing. They were either paid for their
participation or received course credit. All participants were naive to the
purpose of the study and had no former experience with the aversive
learning paradigm used for the experiment. Participants reported no
history of psychiatric or neurological disorders and matched the stan-
dard inclusion criteria for fMRI examinations. The study was approved
by the local ethics committee of the Faculty of Psychology at Ruhr
University Bochum. All participants provided written informed consent
prior to participation and were treated in accordance with the Decla-
ration of Helsinki.

2.2. Fear acquisition paradigm

While in the MRI scanner, all participants completed differential fear
acquisition training followed by fear extinction training. Importantly,
only participants from the experimental group received electrical stim-
ulation during fear acquisition. In contrast, participants from the control
group received no electrical stimulation. Beyond that, participants from
both groups underwent the same experimental procedures. Resting-state
measurements of around 8 min were conducted prior to fear acquisition
training, in between both phases, and after fear extinction training. As
this study is only concerned with fear acquisition training, all proced-
ures related to fear extinction training will be reported elsewhere. The
stimuli and procedure used for fear acquisition training were modified
from Milad et al. [59].

After arrival, participants gave written informed consent and filled
out a questionnaire on demographic variables. Prior to scanning, all
participants were instructed to close their eyes during resting-state scans
and to pay close attention to the images being presented during fear
acquisition training. They were also told that electrical stimulation may
or may not be presented during the experiment. The experimental group
and the control group received identical instructions. The electrical
stimulation (1 ms pulses with 50 Hz for a duration of 100 ms) was
applied as the US using a constant voltage stimulator (STM2000, BIO-
PAC Systems, Goleta, CA, USA) along with two electrodes attached to
the fingertips of the first and second fingers of the right hand. The in-
tensity of the electrical stimulation was adjusted for each participant
individually prior to the first resting-state scan. For this purpose, elec-
trical stimulation was administered at 30 V and raised in increments of
5 V until participants rated the sensation as very unpleasant but not
painful.

During fear acquisition training, participants were shown pictures of
an office room with a switched off desk lamp (Fig. 1, top). In each trial,
the desk lamp would either light up in blue (CS+) or in yellow (CS-),
which served as the two CS. The images were presented using the Pre-
sentation software package (Neurobehavioral Systems, Berkeley, CA,
USA) and MR suitable LCD-goggles (Visuastim Digital, Resonance
Technology, Northridge, CA, USA). At the beginning of each trial, a
white fixation cross was presented on a black background for 6.8-9.5 s.
Next, the office room image was presented for 1 s, which was followed
by the presentation of the CS+ or the CS- for another 6 s. In the exper-
imental group, the CS+ was paired with the electrical stimulation in
62.5 % of trials (10 out of 16 trials). The stimulation was administered
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5.9 s after CS+ onset and co-terminated with CS+ offset. Across all 32
trials, CS+ and CS- were presented 16 times each in pseudo-randomized
order. The first two trials always consisted of one CS+ and one CS-
presentation and so did the last two trials. In the experimental group, the
first and last CS+ presentations were always paired with the electrical
stimulation. There were no trials that presented the same type of CS
more than twice in consecutive order. CS+ and CS- presentations were
distributed equally across both halves of fear acquisition.

After fear acquisition training, participants had to rate the contin-
gencies between CS+ , CS-, and US. First, they were asked to report the
number of electrical stimulations they had received during the experi-
ment. In addition, participants from the experimental group were asked
to rate the unpleasantness of the last electrical stimulation on a 9-point
Likert scale (1 - "'not unpleasant", 9 - "very unpleasant") and to report at
what rate the blue lamplight and the yellow lamplight had been fol-
lowed by an electrical stimulation. In contrast, participants from the
control group were asked if they had noticed any differences between
the two images and how often the blue and the yellow lamplights were
presented.

2.3. Acquisition of imaging data

All imaging data were acquired at the Bergmannsheil hospital in
Bochum, Germany, using a 3 T Philips Achieva scanner with a 32-chan-
nel head coil. Scanning included anatomical imaging, task-based im-
aging, and resting-state imaging.

2.3.1. Anatomical imaging

For the purpose of coregistration and brain parcellation, both
necessary steps in the connectivity analyses performed in this study, T1-
weighted high-resolution anatomical images were acquired (MP-RAGE,
TR = 8.2 ms, TE = 3.7 ms, flip angle = 8°, 220 slices, matrix size =
240 mmx 240 mm, resolution = 1 mmx1 mm x 1 mm). Scanning time
was around 6 min.

2.3.2. Task-based imaging

In order to identify specific brain regions showing a significantly
pronounced or diminished BOLD response during fear acquisition
training, we employed echo planar imaging. We obtained a time series of
fMRI volumes for each participant from the experimental group while
completing fear acquisition training (TR = 2500 ms, TE = 35 ms, flip
angle = 90°, 40 slices, matrix size = 112 mm x 112 mm, resolution =
2mm x 2mm x 3 mm). The same scanning protocol was used in the
control group but obtained imaging data were not used for further
analysis. In both cases, scanning time was around 8 min.

2.3.3. Resting-state imaging

For the analysis of functional brain connectivity, fMRI resting-state
images were acquired before and after fear acquisition training using
echo planar imaging (TR = 2500 ms, TE = 30 ms, flip angle = 90°, 40
slices, matrix size = 112 mmx112 mm, resolution = 2 mmx2 mm X
3 mm). Scanning time of each resting-state scan was around 8 min.

2.4. Acquisition of skin conductance responses

Skin conductance responses were assessed using two Ag/AgCl elec-
trodes filled with isotonic (0.05 NaCl) electrolyte medium placed on the
hypothenar eminence right below the fifth finger of the left hand. Data
were recorded using Brain Vision Recorder software (Brain Products,
Munich, Germany).

2.5. Analysis of imaging data
2.5.1. Analysis of anatomical data

For the purpose of reconstructing the cortical surfaces of T1-
weighted images, we used published surface-based methods in
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Fig. 1. Data acquisition and analysis. The overall sample was split into an experimental (N = 98) and a control group (N = 28). While in the scanner, both groups
participated in fear acquisition training that was preceded and followed by 8-minute-long fMRI resting-state scans. At the beginning of each trial, a white fixation
cross was presented on a black background for 6.8-9.5 s. Next, the image of an office room was presented for 1 s, which was followed by the presentation of the CS+
(blue lamplight) or the CS- (yellow lamplight) for another 6 s. In the experimental group, the CS+ was paired with electrical stimulation as the US (indicated by a
yellow bolt) in 62.5 % of trials administered 5.9 s after CS+ onset. The CS+ and CS- were presented 16 times each in pseudo-randomized order. In both groups, brain
images obtained from fMRI resting-state scans were parcellated into 360 cortical areas and 16 subcortical structures. The resulting ROIs were subjected to a
functional connectivity analysis using BOLD signal correlations. For both groups separately, functional connectivity values from the pre-acquisition matrix were
subtracted from the post-acquisition matrix in order to obtain a difference matrix. In the experimental group, fear learning was quantified by subtracting average skin
conductance responses of CS- trials from those of CS+ trials. For the first analysis, indicated by green frames, the pre-acquisition and post-acquisition matrices of the
experimental group were compared. Functional connections exhibiting statistically significant differences were subjected to two additional analyses. For the second
analysis, indicated by yellow frames, the conditioned fear response, as quantified via skin conductance responses, was correlated with functional connectivity values
from the difference matrix of the experimental group. Functional connectivity values from the pre-acquisition matrix were used as a control variable. For the third
analysis, indicated by light blue frames, the difference matrix of the experimental group was compared to that of the control group. Finally, functional connections

demonstrating significant results in the first and second or the first and third analyses were compared to identify any overlap in results.

<

<

FreeSurfer (version 6.0.0, http://surfer.nmr.mgh.harvard.edu) along
with the CBRAIN platform [80]. The details of this procedure have been
described elsewhere [13,19]. The automatic reconstruction steps
included skull stripping, gray and white matter segmentation as well as
reconstruction and inflation of the cortical surface. These pre-processing
steps were performed for each participant individually. Subsequently,
each individual segmentation was quality-controlled slice by slice and
inaccuracies of the automatic steps were corrected by manual editing if
necessary.

Functional connectivity changes in resting-state data were analyzed
between areas defined by the Human Connectome Project’s multi-modal
parcellation (HCPMMP) [27] as well as FreeSurfer’s automatic subcor-
tical segmentation (Fig. 1, middle). The HCPMMP delineates 180
cortical brain regions per hemisphere and is based on the cortical ar-
chitecture, function, connectivity, and topography from 210 healthy
individuals. From FreeSurfer’s automatic subcortical segmentation, we
included a set of eight subcortical structures per hemisphere (thalamus,
caudate nucleus, putamen, pallidum, hippocampus, amygdala, accum-
bens area), various ventricle masks (lateral ventricle, inferior lateral
ventricle, third ventricle, fourth ventricle), and a mask covering the
whole cerebral white matter compartment [18]. In total, 360 cortical
masks, 16 subcortical masks, 8 ventricle masks, and one white matter
mask were linearly transformed into the native spaces of the
resting-state images that were obtained before and after fear acquisition
training. The respective masks served as regions of interest (ROIs) that
were used for the functional connectivity analyses.

2.5.2. Analysis of task-based data

Task-based data were analyzed by means of FEAT, which is part of
the FSL toolbox (version 6.0.1, http://www.fmrib.ox.ac.uk/fsl). Pre-
processing of respective images involved motion- and slice-timing
correction, spatial smoothing with a 6 mm FWHM Gaussian kernel,
high-pass filtering with the cutoff set to 50 s, linear registration to the
individual’s high-resolution T1-weighted anatomical image, and non-
linear registration to the standard stereotaxic space template of the
Montreal Neurological Institute. First-level analyses employed a general
linear model in order to generate two statistical maps of functional
activation (CS+ > CS- and CS- > CS+) including data from all 16 CS+
and 16 CS- presentations. All six regressors (office image before CS
presentation, CS+, CS-, US, US omission after CS+ presentation, non-US
after CS- presentation) were modeled based on a stick function that was
convolved with the canonical hemodynamic response function, without
specifically modeling the durations of the different events (i.e., event-
related design). Second-level analyses employed random-effects esti-
mation by means of FLAME (FMRIB’s Local Analysis of Mixed Effects).
We utilized an FWE-corrected cluster thresholding option, p-values
< .05, and Z-values > 3.1.

2.5.3. Analysis of resting-state data
Resting-state data were pre-processed using MELODIC, which is also
part of the FSL toolbox. Images were pre-processed in a number of steps:

Discarding the first two EPI volumes from each resting-state scan to
allow for signal equilibration, motion and slice-timing correction, and
high-pass temporal frequency filtering (0.005 Hz). Spatial smoothing
was not applied in order to avoid the introduction of spurious correla-
tions in neighboring voxels. For each ROI, we calculated a mean resting-
state time course by averaging the pre-processed time courses of cor-
responding voxels.

We computed partial correlations between the average time courses
of all 360 cortical and 16 subcortical regions, while controlling for
several nuisance variables. We regressed out the trajectories of 6 head
motion parameters as well as the mean time courses extracted from the
white matter and ventricle masks [25]. The resulting correlation co-
efficients were subjected to a Fisher z-transformation [20] in order to
receive normally distributed data suitable for further testing. By
following this approach, we obtained two symmetrical 376-by-376
matrices with data assessed before (Supplementary Figure 1 and Sup-
plementary Figure 2) and after fear acquisition training (Supplementary
Figure 3 and Supplementary Figure 4), respectively (Fig. 1, bottom).
Each cell of the two matrices contained a Fisher transformed correlation
coefficient as a measure of functional connectivity between a specific
pair of ROIs. Accounting for the symmetry of both matrices as well as
self-correlations on their diagonals, each matrix comprised 70,500 in-
dividual connections. For each participant we calculated the difference
between both matrices by subtracting the pre-acquisition matrix from
the post-acquisition matrix (Supplementary Figure 5 and Supplementary
Figure 6).

2.6. Analysis of skin conductance responses

Raw SCR data from the experimental group were pre-processed with
Brain Vision Analyzer software (Brain Products, Munich, Germany). All
further analyses were conducted semi-automatically using MATLAB
(R2022b, The MathWorks, Natick, MA, USA). SCR to CS presentation
was defined as the maximum amplitude recorded within the time win-
dow starting 1 s after CS onset and ending 6.5 s after CS onset. CR was
defined as the difference between the average SCR across CS+ trials and
the average SCR across CS- trials (Fig. 1, middle). Additionally, SCR to
US presentation was defined as the maximum amplitude recorded
within the time window starting 6.5 s after CS onset and ending 12 s
after CS onset. The unconditioned response was quantified as the dif-
ference between the average SCR across CS+ trials with electrical
stimulation and the average SCR across CS- trials.

2.7. Statistical analysis

All statistical analyses were carried out using MATLAB (version
R2022b, The MathWorks Inc., Natick, MA). For all analyses, we
employed linear parametric methods. Testing was two-tailed with an
a-level of .05, which was corrected for multiple comparisons using the
Benjamini-Hochberg method [8]. We conducted three statistical ana-
lyses, with the results of the first analysis informing the second and third
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analyses.

First, we performed paired-sample t-tests between functional con-
nectivity values from the pre-acquisition and the post-acquisition
matrices. Here, our goal was to assess which of the 70,500 functional
connections showed significant increases or decreases in their Fisher-
transformed BOLD signal correlations after fear acquisition training.
Hence, respective tests were carried out for the experimental group
exclusively and corrected a-levels were in the range between .05 /
70,500 = .0000007 and .05 as defined by the Benjamini-Hochberg
method.

Second, all functional connections reaching statistical significance in
the first analysis were considered for the second analysis. Here, our goal
was to examine the association between aforementioned functional
connectivity changes and the SCRs obtained during fear acquisition
training. To this end, we computed partial correlations between the
functional connectivity values from the experimental group’s difference
matrix (see 2.5.3. Analysis of Resting-state Data) and their conditioned
fear responses. Functional connectivity values from the pre-acquisition
matrix were used as a control variable. Recent studies have demon-
strated that healthy individuals can exhibit fear generalization during
fear acquisition training [83], i.e., by showing fear responses to both
CS+ and CS- presentations. In such cases, differential responses (CS+ -
CS-) may not serve as an appropriate measure of fear learning. There-
fore, we also carried out said partial correlation analysis with CS+ and
CS- responses instead of differential responses.

Third, the same functional connections considered for the second
analysis were subjected to a comparison between the experimental and
control group. For this purpose, the experimental group’s difference
matrix was compared to that of the control group using two-sample t-
tests. Again, we accounted for multiple comparisons by using the
Benjamini-Hochberg method and adjusted the a-levels according to the
number of functional connections that exhibited statistical significance
after the first analysis.

Given the large number of brain regions involved in the analyses, we
decided to repeat the second and third analyses while following a leave-
one-out cross-validation approach with stability selection. More specif-
ically, 97 iterations of the second analysis (partial correlations in the
experimental group) and 125 iterations of the third analysis (differences
in RSFC changes between the experimental and control groups) were
carried out. With each iteration, a different participant was excluded
from the respective analysis. In the end, we identified functional con-
nections that exhibited significant results across 90 % and 100 % of it-
erations, respectively. By ensuring that significant findings were robust
across multiple subsamples, we enhanced the reliability of results,
reduced the risk of false positives, and prevented overfitting.

In a final step, we checked the results yielded by the second and third
analyses for overlaps. Only results generated by the same type of cross-
validation (no cross-validation, cross-validation with a 90 % replication
threshold, cross-validation with a 100 % replication threshold) were
matched against each other. The second, third, and overlap analyses in
combination with the three types of cross-validation, resulted in nine
different sets of connections. We used the connections from each set to
extract the corresponding functional connectivity changes from partic-
ipants’ difference matrices. These values in turn served as data to
implement a machine learning pipeline to classify each participant as
belonging to either the experimental or the control group. The pipeline
employed the Synthetic Minority Oversampling Technique (SMOTE) to
address class imbalances in the training data, ensuring a balanced rep-
resentation of the experimental and control group. Data scaling was
applied to normalize the covariates, enabling the models to focus on
patterns rather than raw magnitudes. To prevent overfitting, we used
logistic regression models with elastic-net regularization (L1 + L2).
Hyperparameters were tuned via grid search cross-validation. Each
model’s performance was evaluated using nested cross-validation,
consisting of an outer 10-fold cross-validation loop to assess general-
ization to unseen data (approximately 113-114 subjects for training and
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12-13 for testing per fold) and an inner 5-fold cross-validation loop to
select optimal hyperparameters. We built nine models in total, one for
each set of connections.

3. Results
3.1. Efficacy of fear acquisition training

Participants showed significantly greater SCRs in reaction to
CS+ presentations relative to CS- presentations (t(97) = 6.525,
p < .001) (Fig. 2), indicating successful fear learning. We also found a
significant correlation between CRs and contingency ratings (r = 0.28,
p < .001). This association indicates that the explicit knowledge par-
ticipants had about shock occurrence was associated with the more
implicit physiological level, namely in the mean difference between
SCRs in reaction to CS+ and CS- presentations. Furthermore, fMRI data
obtained during fear acquisition training revealed distinct patterns of
functional activation in reaction to CS+ and CS- presentations. Overall,
our data were in good accordance with the results of a large-scale meta-
analysis on the functional correlates of fear acquisition [23]. Voxel
clusters exhibiting significant (p < .01, Z > 2.3, FWE-corrected) BOLD
signal contrasts in our data either overlapped with clusters from the fear
and safety networks or were directly adjacent to them (Supplementary
Figure 7 and Supplementary Figure 8). With regard to the fear network
(contrast CS+ minus CS-), we were able to replicate core components
like the anterior insular cortex, caudate nucleus, dorsal anterior cingu-
late cortex, and secondary somatosensory cortex. Likewise, core com-
ponents from the safety network (contrast CS- minus CS+), namely the
primary somatosensory cortex, dorsal anterior prefrontal cortex, para-
hippocampal gyrus, lateral orbitofrontal cortex, angular gyrus, and
dorsal posterior precuneus, could also be identified.

3.2. Functional connectivity changes in the experimental group

For our first analysis, we employed paired-sample t-tests to compare
the experimental group’s pre-acquisition matrices (Supplementary
Figure 1) to its post-acquisition matrices (Supplementary Figure 3). In
total, we observed 3089 functional connections (4.38 %) that exhibited
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Fig. 2. Mean skin conductance responses. Bar plots showing the mean skin
conductance responses in reaction to CS+ (black bar) and CS- (white bar)
presentations in microSiemens (uS). Data were averaged across all 16 CS+ and
16 CS- trials, respectively. Error bars represent standard errors (* p < .001).
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significant changes after correction for multiple comparisons
(Supplementary Table 1). It is noteworthy that 3059 out of these 3089
significant connections (99.03 %) showed increases in their Fisher-
transformed BOLD signal correlations, meaning that positive co-
efficients became larger, negative coefficients became smaller, or
negative coefficients became positive. This pronounced shift towards
more positive coefficients was not only present among the 3089 signif-
icant connections but could also be observed for the overall functional
connectome of the experimental group. Here, 53,409 out of 70,500
connections (75.76 %) showed increases, while only 17,091 (24.24 %)
showed decreases. We observed a similar, albeit less pronounced (Xz(l,
N = 141,000) = 2489.96, p < .001), pattern in the control group with
44,794 connections (63.54 %) showing increases and 25,706 connec-
tions (36.46 %) showing decreases.

3.3. Associations between functional connectivity changes and
conditioned fear responses

Our second analysis involved all functional connections that
exhibited statistically significant changes between the pre-acquisition
and post-acquisition matrices (first analysis). We computed partial
correlations between these RSFC changes and the participants’ CR ob-
tained via SCR during fear acquisition training (see 2.6. Analysis of Skin
Conductance Responses). RSFC values from the pre-acquisition matrix
were used as a control variable. As with the first analysis, the a-levels
were corrected using the Benjamini-Hochberg method and ranged from
.05 /3089 = .000016 to .05 given the number of functional connections
(3089) that were considered. We identified 386 connections for which
the correlations between RSFC changes and CR reached a level of o
= .05 (uncorrected). However, none of these correlations survived said
correction for multiple comparisons (Supplementary Table 2). Among
these 386 connections, 371 were positive (96.11 %) and 15 (3.89 %)
were negative. The largest positive correlation was r = .4065 and the
smallest was r = .2000. The largest negative correlation was r = -.3095
and the smallest was r = -.2055. Almost all 386 significant connections
(99.22 %) were constituted by two cortical areas and only three con-
nections (0.78 %) involved one cortical and one subcortical area. We
observed slightly more interhemispheric (54.92 %) than intrahemi-
spheric (45.08 %) connections. In addition to partial correlations be-
tween RSFC changes and CR, we also computed partial correlations
between RSFC changes and CS+ responses (Supplementary Table 3) as
well as RSFC changes and CS- responses (Supplementary Table 4).

The second analysis was repeated while following a leave-one-out
cross-validation approach with stability selection. Given that none of
the correlations from the initial analysis survived a correction for mul-
tiple comparisons, we considered all results reaching a level of a = .05
(uncorrected) instead. Among the 386 connections yielded by the initial
analysis, we identified 319 connections which replicated across 90 % of
iterations and 173 which replicated across 100 % of iterations. The exact
percentage value for each connection is provided in Supplementary
Table 2.

3.4. Group differences in functional connectivity changes

For our third analysis, we subjected all statistically significant con-
nections from the first analysis to a comparison between the experi-
mental and control group. For this purpose, we compared the difference
matrices of the two groups (Supplementary Figure 5 and Supplementary
Figure 6) with each other using two-sample t-tests. The a-levels were
corrected via the Benjamini-Hochberg method and covered the same
range as in the second analysis. Again, there were no results that sur-
vived this correction. However, we identified 285 functional connec-
tions for which the t-test comparisons between experimental and control
group RSFC changes reached a level of o =.05 (uncorrected)
(Supplementary Table 5). The majority of these functional connections
showed an increase of RSFC in the experimental group combined with a

Behavioural Brain Research 495 (2025) 115764

decrease (80.00 %) or increase (16.84 %) of RSFC in the control group.
Only 9 connections (3.16 %) showed a decrease in the experimental and
an increase in the control group. We did not observe any connections
exhibiting a decrease of RSFC in both the experimental and the control
group. The 285 significant connections were either constituted by two
cortical areas (92.98 %) or one cortical and one subcortical area
(7.02 %). There were no connections running between two subcortical
areas. We found a balanced distribution of intra- (50.18 %) and inter-
hemispheric (49.82 %) connections. Changes in RSFC ranged from
—0.0636 to 0.1321 in the experimental group and from —0.0845 to
0.2118 in the control group. The smallest group difference in RSFC
changes still reaching a level of a = .05 (uncorrected) was 0.0524 and
the largest such difference was 0.1358.

In an analogues manner to the second analysis, the third analysis was
also repeated while following a leave-one-out cross-validation approach
with stability selection. Again, we considered those results reaching a
level of o = .05 (uncorrected). Among the 285 connections yielded by
the initial analysis, we identified 251 connections which replicated
across 90 % of iterations and 148 which replicated across 100 % of it-
erations. The exact percentage value for each connection is provided in
Supplementary Table 5.

3.5. Overlaps in results

Finally, we checked the results from the second and third analysis for
overlaps. Since both analyses did not yield any significant results that
survived the applied Benjamini-Hochberg correction for multiple com-
parisons, we examined all results reaching a level of a = .05 (uncor-
rected), namely 386 connections from the second and 285 connections
from the third analysis. Among these, we found 21 matching connec-
tions (Fig. 3 and Table 1). All of these connections were constituted by
two cortical areas. There were 12 interhemispheric connections and 9
intrahemispheric connections of which 5 were located in the left
hemisphere and 4 were located in the right hemisphere. We also checked
the results obtained from the alternate versions of the second analysis
for potential overlaps with the results from the third analysis. Partial
correlations between RSFC changes and CS+ responses yielded 28
matching connections (Supplementary Table 6) while partial correla-
tions between RSFC changes and CS- responses yielded 21 matching
connections (Supplementary Table 7).

The leave-one-out cross validation approach with stability selection
identified the most robust results from the second and third analyses and
yielded a smaller set of connections. A replication threshold of 90 %
resulted in 319 connections for the second and 251 connections for the
third analysis, among which we found 15 matching connections. An
even stricter replication threshold of 100 % resulted in 173 connections
for the second and 148 connections for the third analysis, among which
we found only 3 matching connections. These different sets of connec-
tions are color-coded in Fig. 3 and highlighted in Table 1.

3.6. Accuracy of group classification derived from functional connectivity
changes

To classify participants as belonging to either the experimental or the
control group, we implemented a machine learning pipeline that used
the functional connectivity changes corresponding to specific connec-
tions from nine different sets as features. We built and tested a model for
each of these nine sets. The best performance across folds was achieved
by models for which feature selection was derived from the results of the
third analysis (differences in RSFC changes between the experimental
and control groups). More specifically, cross-validation with a 90 %
replication threshold performed best (251 features, 89.56 + 7.67 %),
followed by cross-validation with a 100 % replication threshold (148
features, 87.39 + 8.37 %), and no cross-validation (285 features, 86.72
+ 10.50 %). Feature selection derived from the results of the overlap
analysis performed worse (3-21 features, 61.78-78.06 %) and feature
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Fig. 3. Learning-related changes in functional connectivity. On the left side, functional connections are shown as yellow, white, and blue lines connecting pairs of
brain areas, which are depicted as red nodes on a semi-transparent brain. All connections had to replicate across three analyses. First, functional connectivity changes
in response to fear acquisition training (corrected for multiple comparisons). Second, partial correlations between functional connectivity changes and conditioned
fear responses derived from skin conductance (uncorrected). Third, group differences in functional connectivity changes (uncorrected). Yellow connections survived
a cross-validation procedure for the second and third analyses that a required results to replicate across 100 % of iterations. Yellow and white connections survived
the cross-validation procedure after relaxing the replication threshold to 90 %. Yellow, white, and blue connections constituted the entire set of connections when the
cross-validation procedure was omitted. On the right side, all brain areas involved in the functional connections shown on the left are depicted on lateral and medial
views of cortical surfaces. Naming of brain areas is based on the Human Connectome Project’s multi-modal parcellation.

selection derived from the results of the second analysis was around
chance level (173-386 features, 45.44-52.11 %). All results are listed in
Supplementary Table 8.

In the experimental group, the majority of overlapping connections
(19/21, 90.48 %), showed an increase in RSFC when comparing the
measurements obtained before and after fear acquisition training. Only
2 connections showed a decrease in RSFC. These were R_TPOJ3 - L_IP1
(temporo-parieto-occipital junction - intraparietal sulcus) and R_V3 -
R_10pp (visual area 3 - frontal pole). Changes in RSFC ranged from
—0.0575 to 0.0960 with the connection R_V6 - L_V6 (visual area 6 -
visual area 6) exhibiting the largest RSFC increase. The partial correla-
tions between RSFC changes and CR were positive for 19 connections
(r = .2027 t0.3201) and negative for the remaining 2 connections (r = -
.2244 and —.3095). The strongest positive correlation was shown by
connection L_V6 - L_ProS (visual area 6 - area prostriata) and the
strongest negative correlation by connection R_TPOJ3 - L_IP1 (temporo-
parieto-occipital junction - intraparietal sulcus). In the control group,
pre- vs. post-acquisition RSFC changes showed more decreases (13/21,
61.90 %) than increases (8/21, 38.10 %) and were in the range between
—0.0374 and 0.2045. Consequentially, group differences in RSFC
changes primarily resulted from RSFC increasing in the experimental
group and decreasing in the control group. This was the case for 13 out
of 21 connections. Interestingly, all but one of the 6 connections that
exhibited RSFC increases in both groups showed higher increases in the
control compared to the experimental group. The group differences in
RSFC change ranged from 0.0593 for the connection L_p24 - L_5L
(anterior cingulate cortex - superior parietal lobule) to 0.1085 for the
connection R_V6 - L_V6 (visual area 6 - visual area 6).

4. Discussion

The primary goal of this study was to investigate fear learning-
associated RSFC changes in participants free of psychiatric/neurolog-
ical disorders. Unlike previous studies [16,17,34,76], our approach
critically differed in two ways. First, we examined all functional con-
nections across the entire brain, avoiding preselection of fear and safety
network regions. Second, we included a control group to isolate
fear-specific effects. These methodological distinctions yielded novel
insights discussed below. The ROI nomenclature follows the Human

Connectome Project’s multimodal parcellation [27], with detailed de-
scriptions provided in the supplementary materials to the original
publication.

Our first analysis examined RSFC changes in the experimental group.
Most functional connections showed positive shifts (99 % of significant
results; 75 % overall), with positive correlations increasing and negative
correlations decreasing or even reversing. Physiologically, this may
suggest strengthened excitatory and weakened inhibitory connections.
The same pattern, though less pronounced (63 % of connections),
occurred in the control group. Both groups received identical in-
structions, i.e. to attend to images potentially paired with shock,
creating an unknown/threatening situation that likely induced alertness
and attention in all participants. This state was further reinforced in the
experimental group by actual shocks. Research in rodents has shown
that the strength of excitatory connections is significantly reduced under
anesthesia compared to a wakeful state [89]. In humans, the balance
between excitation and inhibition has been shown to shift towards in-
hibition when entering a state of low vigilance or drowsiness, e.g. after a
large meal [92]. These findings are well in line with the results from our
first analysis, suggesting that a state of alertness and attention might
cause a shift towards excitation.

Functional connections exhibiting statistically significant RSFC
changes in our first analysis were subjected to our second analysis. Here,
we computed partial correlations between respective RSFC changes and
CR values while using pre-acquisition RSFC measures as a control var-
iable. None of these partial correlations survived correction for multiple
comparisons. However, the 386 correlations reaching a level of a = 0.05
(uncorrected) yielded an interesting result, in that the vast majority of
correlations turned out to be positive (about 96 % of correlations). As
mentioned above, nearly all significant RSFC changes in the experi-
mental group represented positive shifts. This indicates stronger con-
nectivity changes were associated with higher CRs. Since CRs quantify
threat-safety discrimination (CS+ minus CS— SCRs), high CR values
reflect distinct physiological reactions to threat versus safety signals.
Taken together, this pattern suggests participants entered an alert state
during pre-training instructions, which was amplified by actual shocks
in the experimental group and neurally expressed as strengthened
excitatory and weakened inhibitory connections. Greater shifts led to
clearer SCR differentiation, indicating enhanced fear learning with



Table 1

Functional connections replicating across all three analyses. The table lists all functional connections that exhibited statistically significant results in the first analysis (comparison of resting-state functional connectivity
measured before and after fear acquisition in the experimental group, o = .05 corrected), the second analysis (partial correlations between post-pre differences in resting-state functional connectivity and conditioned fear
responses in the experimental group, a = .05 not corrected), and the third analysis (comparison of post-pre differences in resting-state functional connectivity between the experimental and control group, o = .05 not
corrected). Results of respective analyses are separated by vertical lines. Connections highlighted in bold survived a cross-validation procedure for the second and third analyses that a required results to replicate across
90 % of iterations. Connections highlighted with an asterisk survived this procedure even after increasing the replication threshold to 100 %. Naming of brain areas is based on the Human Connectome Project’s multi-
modal parcellation. RSFCeyp pre = mean resting-state functional connectivity between two brain areas measured before fear acquisition in the experimental group; RSFCeyp post = mean resting-state functional connectivity
between two brain areas measured after fear acquisition in the experimental group; RSFCexp_diff = RSFCexp post - RSFCexp pre; P1 = p-values from first analysis; o = o-values from first analysis (Benjamini-Hochberg
corrected); r = partial correlation coefficients from second analysis; p2 = p-values from second analysis; az = a-values from second analysis (Benjamini-Hochberg corrected); RSFCeon giff = difference between resting-state
functional connectivity measured before and after fear acquisition in the control group; ps= p-values from third analysis; a3 = a-values from third analysis (Benjamini-Hochberg corrected).

ROI A ROIB RSFCexp pre RSFCexp post RSFCexp aiff P1 o r ) 2] o RSFCexp qiff RSFCeon_diff RSFCexp _aiff P3 o3
RSFCcon_giff

R_a24pr L_PGi —0.048554 0.001914 0.050468 0.001599 0.001872 0.227795 0.024830 0.003707 0.050468 —0.037364 0.087832 0.008452 0.001052
R_a32pr L_d23ab 0.061715 0.109635 0.047920 0.002131 0.002159 0.246451 0.014956 0.002736 0.047920 —0.032352 0.080272 0.009969 0.001279
L_RI* L_LBelt* 0.419894 0.463698 0.043804 0.001910 0.002043 0.236598 0.019636 0.003205 0.043804 0.117407 0.073603 0.013790 0.001635
R_a32pr L_8BL 0.031026 0.094920 0.063895 0.001352 0.001716 0.248415 0.015769 0.002800 0.063895 —0.032895 0.096790 0.013846 0.001667
R 9m* R_6d* 0.027784 0.094487 0.066703 0.000126 0.000509 0.221096 0.031305 0.004387 0.066703 —0.021037 0.087740 0.014647 0.001797
R_OP1 L plOp 0.023760 0.069069 0.045309 0.000587 0.001104 0.202686 0.046474 0.005860 0.045309 —0.020005 0.065314 0.017172 0.002023
R_STSdp R_6V 0.108672 0.162453 0.053781 0.001425 0.001772 0.234826 0.020599 0.003286 0.053781 —0.027332 0.081113 0.020615 0.002331
LVée L_ProS 0.332561 0.408701 0.076140 0.000588 0.001106 0.320137 0.001390 0.000421 0.076140 0.183497 0.107357 0.021108 0.002396
R_V6 L V6 0.611140 0.707169 0.096029 0.000026 0.000232 0.231244 0.022670 0.003512 0.096029 0.204535 0.108505 0.021579 0.002509
R_TPOJ3 L IP1 0.109015 0.050647 —0.058368 0.001330 0.001706 —0.224412 0.027118 0.003998 —0.058368 0.028032 0.086400 0.022999 0.002606
R_STSvp* R_FEF* 0.089729 0.147768 0.058039 0.000424 0.000935 0.248543 0.014097 0.002574 0.058039 —0.020449 0.078488 0.023196 0.002622
R_p32 L 55b —0.025352 0.033509 0.058861 0.001642 0.001893 0.239995 0.017897 0.003059 0.058861 —0.033715 0.092576 0.024014 0.002703
L 24dd L 10d 0.050373 0.094032 0.043659 0.002164 0.002177 0.227366 0.025112 0.003739 0.043659 —0.021455 0.065114 0.026467 0.002865
R_TPOJ3 L_TPOJ2 0.347489 0.410436 0.062947 0.000189 0.000615 0.263974 0.008984 0.001716 0.062947 0.142458 0.079511 0.027232 0.002962
LLO1 L 47m —0.013922 0.034143 0.048065 0.001666 0.001908 —0.309533 0.002034 0.000518 0.048065 —0.017540 0.065605 0.035733 0.003529
R_ProS L DVT 0.292456 0.365495 0.073039 0.000065 0.000356 0.238497 0.018646 0.003124 0.073039 0.156080 0.083040 0.039139 0.003852
R_a24pr L_10d —0.029134 0.038158 0.067292 0.000185 0.000610 0.204261 0.044764 0.005665 0.067292 —0.003247 0.070539 0.041289 0.004030
L p24 L SL 0.021329 0.075187 0.053858 0.000130 0.000516 0.281469 0.005992 0.001230 0.053858 —0.005419 0.059277 0.042105 0.004095
R V3 R_10pp 0.017973 —0.039544 —0.057517 0.000544 0.001067 0.254226 0.011977 0.002137 —0.057517 0.010214 0.067730 0.044275 0.004192
R 9m L_TPOJ2 0.051930 0.119829 0.067900 0.000039 0.000277 0.206824 0.042092 0.005439 0.067900 0.001611 0.066288 0.046730 0.004370
RRI L_FOPS5 0.162861 0.215083 0.052223 0.000852 0.001348 0.224342 0.027167 0.004030 0.052223 —0.012456 0.064679 0.047774 0.004451
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robust associations between CS presentations and threat/safety. This
enhancement likely stems from two factors. First, moderate acute stress
during learning facilitates memory formation, especially for arousing
information [36,81]. In our study, this effect might have been optimized
by participant-controlled shock intensity that avoided detrimental
exhaustion [44]. Second, focused attention heightens pain unpleasant-
ness [61]. It is conceivable that participants who were more alert
perceived the electrical stimulation as more unpleasant and formed
stronger associations between the aversive stimuli and the cues pre-
ceding them.

The third analysis compared RSFC changes between experimental
and control groups, using connections with significant changes from the
first analysis. Among the 285 connections that reached a level of «
= 0.05 (uncorrected), we found that group differences in RSFC change
were predominantly constituted by positive RSFC shifts in the experi-
mental and negative RSFC shifts in the control group (about 80 % of
results). Minority patterns (17 %) showed positive shifts in both groups,
albeit weaker in controls. However, interpreting this as a true inverted
pattern requires caution. In contrast to the experimental group, only two
control group connections (R_LBelt - L_3a and R_LBelt - R_6a) survived a
correction for multiple comparisons. Thus, most control group RSFC
changes likely represent noise rather than meaningful effects.

Our third analysis underscores the necessity of control groups when
investigating neural effects of interventions like fear acquisition
training. While the within-group analysis revealed over 3000 significant
RSFC changes in the experimental group, the between-group compari-
son showed that merely 285 of these changes were significantly higher
in the experimental group, not even considering correction for multiple
comparisons. Thus, 92 % of observed changes likely reflect general as-
pects of the paradigm rather than fear learning itself. Controlled designs
are therefore essential for identifying genuine neural correlates of fear
memory formation. Notably, most prior fear learning studies lack such
between-group designs, with few exceptions [16,17].

Results from the second and third analyses require cautious inter-
pretation due to non-significance after correction for multiple compar-
isons. In order to maximize validity, we identified overlapping results
between these analyses. This revealed 21 functional connections satis-
fying all three criteria: Significant RSFC changes in the experimental
group that also correlated with CR values and differed from control
group changes. These 21 connections were constituted by a total of 35
individual ROIs because seven ROIs (L_10d, L_.TPOJ2, L V6, R 9m,
R_TPOJ3, R_a24pr, R_a32pr) were involved in two connections instead
of one. Given that empirical evidence on the exact connections from our
final results is scarce, the following paragraphs will discuss individual
ROIs and their functional relevance for fear learning. However, it should
be noted that RSFC represents intrinsic spontaneous fluctuations in the
BOLD signal. While these can show spatial overlap with extrinsic task-
evoked activation and deactivation patterns, they essentially reflect
different brain processes [54]. Therefore, our results should be inter-
preted with this caveat in mind.

There was a considerable number of ROIs which partially overlapped
(at least 30 % of their volume) with regions from the fear or safety
networks proposed by Fullana et al. [23]. The fear network is expected
to increase its activity when individuals are processing cues indicating
potential threats (CS+), while the same applies to the safety network in
the face of potential safety signals (CS-). A complete list of all ROIs from
the Human Connectome Project’s multi-modal parcellation and their
overlap with the fear and safety networks is given in Supplementary
Table 9.

We identified seven ROIs showing substantial overlap with the fear
network: L_p24, R_a24pr, and R_a32pr located along the bilateral ante-
rior cingulate cortex; L_24dd adjacent to these cingulate regions; R_RI in
the right retroinsular cortex; R_FEF and L_55b in the frontal eye fields;
and L_FOP5 in the left frontal operculum. The involvement of cingular
ROIs is significant given their role in an autonomic-interoceptive
network with the anterior insular cortex [55,77]. Within this network,
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the anterior insula integrates cognitive, affective, and physical states
while the dorsal anterior cingulate initiates autonomic and behavioral
responses [56]. This integration is complemented by multimodal sen-
sory processing (pain, temperature, visceral, vestibular inputs) in the
retroinsular cortex [7], making it relevant for fear processing. Although
bilateral retroinsular ROIs (R_RI and L_RI) appeared in our results, only
R_RImet the 30 % overlap criterion for the fear network. The frontal eye
fields (R_FEF and L_55b) are crucial for controlling saccadic eye move-
ments and allocating spatial attention [53]. Their involvement aligns
with our paradigm requiring focused attention on a specific visual
element, namely the desk lamp in the office scene. The inclusion of
L_FOPS5 is particularly notable when considered alongside premotor
regions in our results (R_6d, R_6v, L 5L), which are associated with
movement preparation [51,70,75]. It has been demonstrated that the
frontal operculum and premotor cortex show increased activation dur-
ing fear acquisition training, especially in anticipation of US delivery
[26]. Most likely, this is due to the frontal operculum timing the onset of
US delivery and the premotor cortex preparing an adequate motor
response. Given our US (electrical stimulation to right index/middle
fingers), left-hemisphere L 5L may inhibit involuntary right-hand
movements anticipating stimulation. R.6d and R 6v likely serve
similar functions despite their ipsilateral location to the stimulated
hand. R_OP1, while not meeting the 30 % overlap criterion for the fear
network, constitutes the parietal operculum similar to L_FOPS5. This re-
gion processes somatosensory information [52] and serves as an inte-
grative hub due to its connectivity with anterior parietal cortex,
thalamus, and contralateral hemisphere [15], supporting higher-order
somatosensory processing including perceptual learning [69].

Regarding the safety network, we identified four ROIs showing
substantial overlap: L_d23ab in the left posterior cingulate cortex, L_8BL
in left frontal cortex (Brodmann area 8), and left parietal areas L_IP1 and
L_PGi. Adjacent areas included bilateral temporoparietal junctions
(L_TPOJ2 and R_TPOJ3) and L_p32 near ventromedial prefrontal cortex.
While the safety network partially overlaps with the default-mode
network active during low cognitive effort [71], its activation reflects
active CS- processing requiring attention and evaluation [32]. L_d23ab
contributes to an extended episodic memory network, potentially
encoding CS-US associations [35]. L_8BL has been shown to activate
during uncertain situations [90]. The inferior parietal lobule (including
L_IP1, L_PGi, and adjacent L_TPOJ2/R_TPOJ3) shows heightened acti-
vation in contextual fear conditioning [2,6], integrating multisensory
information and modulating threat attention [4,48].

In addition to brain regions from the fear and safety networks, our
final analysis also revealed visual ROIs. Among these were left-
hemisphere L_ProS, L_DVT, L LO1, L_V6 and right-hemisphere R_ProS,
R_V3, R_V6. Prostriata (L_ProS and R_ProS) and dorsal transitional area
(L_DVT) mediate transitions between early visual areas and more ante-
rior regions like posterior cingulate, providing a ventromedial visual
stream to the hippocampus for scene representation [72]. Their
involvement aligns with our choice of CS, namely a picture of an office
environment. The lateral occipital cortex, comprising L_LO1, is pri-
marily associated with object and face recognition [29,62], while visual
areas 3 and 6 (R_V3, L_V6, R_V6) play a crucial role in the processing of
motion [24,68]. To our knowledge, visual areas 3 and 6 have not been
discussed in previous fMRI research on fear acquisition or fear consoli-
dation. However, an involvement of primary visual cortex (V1) has been
demonstrated in both primates [46] and humans [3,39,73,78,84]. The
majority of these studies employed visual grating stimuli as CS and were
able to show distinct CS+/CS- responses in V1, which processes grating
orientation. Similarly, paradigms using faces as CS enhance fear
network connectivity with fusiform areas [34]. Thus, visual areas pro-
cessing specific CS types appear to play a critical role in fear memory
acquisition and consolidation.

Beyond visual regions, we also identified frontal ROIs outside of the
fear and safety networks: Brodmann area 10 subsections (L_10d, L_p10p,
R_10pp) and dorsomedial prefrontal R_9m (BA9). BA10 processes pain,
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pain anticipation, and pain memory [65]. In the present study, partici-
pants were instructed to set the intensity of electrical stimulation to a
highly aversive but not painful level. However, the circumstance that
such sensations fall on a continuum and do not represent discrete cat-
egories may explain the involvement of BA10 in fear learning. R 9m,
typically linked to social cognition [47], also processes reward antici-
pation [37]. Its involvement may reflect reward processing when shocks
were omitted during CS— and non-reinforced CS+ trials, contributing to
CS value assessment.

The final step of our analysis also yielded a small number of ROIs that
are hard to associate with fear learning, namely L _LBelt, R_STSdp,
R_STSvp, and L_47m. These areas are involved in a broad range of tasks
including auditory processing [91], motion processing [33], social
cognition [27], and language [14,66]. None of these functions were
required for our experiment, making it difficult to interpret the
involvement of respective ROIs.

The absence of amygdala involvement in our final results was un-
expected, given its well-documented role in fear acquisition [5,38,41].
However, recent meta-analyses question amygdala centrality in human
fear processing [22,23,88], particularly for pain-related paradigms [9].
Methodological differences between animal and human studies warrant
consideration. Animal models use intense unconditioned stimuli (e.g.,
foot shocks) eliciting defensive behaviors (freezing/escape) with robust
amygdala activation [42], whereas human studies employ milder stim-
uli (e.g., tolerable shocks) rarely evoking avoidance responses. This
suggests amygdala engagement may be stronger when threats directly
trigger defensive actions. Methodological challenges like precise
amygdala delineation in fMRI may also contribute to inconsistent find-
ings [22,31].

As mentioned in section "2.1. Participants", the vast majority of
participants recruited for this study had to be of European descent due to
genetic analyses carried out for a different study utilizing the same data
set. This circumstance contributed to a final sample that was rather
homogenous in view of race and ethnicity. On average, participants
reported that three out of their four grandparents were born in Germany.
This ratio did not differ between the experimental and control group but
it has to be acknowledged that this kind of sample homogeneity can
impact the generalizability of findings across races. For example,
Kredlow et al. [40] found that African-American participants are more
likely to show very low or unmeasurable SCRs compared to non-African
American participants and are therefore more often excluded from
respective studies. Although none of our participants was of
African-American descent, our findings should still be interpreted with
care given the study sample’s general lack of racial and ethnical
diversity.

In conclusion, our findings suggest that fear learning is associated
with changes in the strength of numerous functional resting-state con-
nections. However, it is quite likely that many of these changes cannot
be attributed to fear learning itself given that they can be observed for
the experimental and control group alike. This highlights the impor-
tance of employing a proper control group whenever investigating the
effects of fear acquisition or any other kind of intervention. Due to our
explorative whole-brain approach and the high number of examined
functional connections, many results failed to reach statistical signifi-
cance. We chose to compensate for that by considering uncorrected re-
sults but only when they replicated across all analyses. Furthermore, we
followed a cross-validation approach with stability selection to increase
the reliability of results and reduce the risk of false positives. There are
several other strategies that can be employed to address the complexity
of large-scale connectivity analyses. For example, summarizing func-
tional connectivity at the network level, such as averaging connectivity
within or between established brain networks (e.g., default mode or
salience networks), can reduce dimensionality and enhance interpret-
ability. Additionally, graph theory and network analysis can charac-
terize topological properties like local clustering or global efficiency,
offering a complementary perspective on brain organization [82].
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However, this approach requires predefined network models and bears
the risk of oversimplifying or even overlooking local dynamics. Methods
such as connectome-based predictive modeling (CPM), as described by
Shen et al. [79], present a data-driven approach to predict individual
behavioral outcomes, such as fear responses, from connectivity patterns.
CPM'’s use of linear operations and feature selection makes it particu-
larly suitable for handling large connectivity datasets efficiently. How-
ever, it may fail to analyze more complex relationships. The approach
followed in our study led to a selection of functional connections mainly
constituted by known brain regions from the fear and safety networks
but also visual, frontal, premotor, and somatosensory regions. It is
conceivable that this was the result of the employed fear acquisition
paradigm targeting specific modalities, namely visual perception of
presented CS+ and CS- images as well as somatosensory perception of
electrical stimulation administered to the fingertips. The involvement of
premotor regions could be explained by participants preparing to
counteract involuntary body movements caused by electrical stimula-
tion. Taken together, these findings can be viewed as a starting point for
future research investigating the possibility of updating the traditional
fear and safety networks based on modality dependencies. A highly
specific elucidation of the neural underpinnings of fear learning is of
paramount importance, not only for advancing our fundamental un-
derstanding of brain function, but also for its potential to inform clinical
applications. As we continue to delineate the neural circuits and
mechanisms governing fear learning, we are better positioned to trans-
late empirical findings into practical interventions. Such interventions
may include personalized brain stimulation techniques utilized to
effectively treat anxiety disorders and related psychopathologies.
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