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ABSTRACT
When recalling what you ate for breakfast last Wednesday, you might not remember the exact meal, but you may confidently 
select the items you typically eat. Here, semantic knowledge (i.e., what you usually eat) contributes to the reconstructive process 
of episodic memory retrieval (i.e., what you actually ate). In the current fMRI study, we used a highly realistic virtual envi-
ronment to test this influence of semantic knowledge on episodic memory retrieval. During the task, 60 participants actively 
(task-relevant) or passively (task-irrelevant) encountered everyday objects that were either congruent (i.e., rubber duck in the 
bathroom) or incongruent (i.e., a toaster in the bathroom) with their expected location. Thereby, we created conflicting infor-
mation between the episodic memory trace (toaster in the bathroom) and semantic information (toaster in the kitchen) during 
retrieval. Using multivariate analyses, we analyzed the neural basis of this semantic bias. Further, we administered cortisol, 
typically associated with impaired episodic memory retrieval, to half of the participants prior to retrieval, thereby manipulating 
the balance between correct episodic and incorrect semantic retrieval. In the lateral occipital cortex (LOC), incongruent task-
relevant objects showed greater similarity to their congruent semantic counterparts than did task-irrelevant objects. Notably, 
spatial memory tended to be reflected in similarity patterns in the LOC. Strikingly, incongruent objects showed a higher pattern 
reorganization (i.e., pre-/post-encoding similarity) compared to congruent objects, reflecting a difference in neural representa-
tion for objects encountered in conflict with prior knowledge. In contrast to our hypotheses, cortisol prior to retrieval had no 
effect on semantic bias. However, cortisol influenced neural pattern similarity: we found higher pattern reorganization within 
the posterior hippocampus in the cortisol group. Similarly, we found higher confidence to be linked with similarity patterns in 
the LOC and lingual gyrus in the placebo, but not in the cortisol group. This indicates an effect of cortisol on memory trace re-
instatement during retrieval. Our findings on incongruent object processing contribute to the understanding of how the human 
brain constructs past episodes from episodic memory traces, suggesting an influence of prior semantic knowledge, reflected in 
neural similarity patterns.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1   |   Introduction

Retrieving past experiences is a crucial aspect of everyday life, 
as our memories guide actions, inform thoughts, and shape our 
understanding of the world. However, memories are not merely 
the reproduction of past episodes but are subject to consistent 
changes, revealing a level of untrustworthiness. Although hu-
mans rely on whatever happened to them during the past day, 
month, or year, influential behavioral studies have unraveled 
systematic memory errors and biases during the retrieval pro-
cess, shaped by various factors such as semantic knowledge 
(Bartlett  1932; Carpenter and Schacter  2017; Roediger and 
McDermott 1995). One framework aiming to explain these re-
trieval errors is the scenario construction model, which states 
that memory retrieval is in fact a constructive process, to which 
various systems contribute (Cheng et  al.  2016). Gist informa-
tion is retrieved from what has been encoded and consolidated 
from the relevant episode. During retrieval, the gist is comple-
mented by situational and personal factors, all contributing to 
the ability to travel back in time to the specific episode. Various 
effects of semantic knowledge on episodic memory retrieval 
have been demonstrated. These range from the false retrieval 
of semantically related words in word list recall tasks to the 
retrieval of an incongruent object's location at a semantically 
fitting but incorrect place after encoding a realistic virtual en-
vironment (Roediger and McDermott 1995; Zöllner et al. 2023). 
Importantly, the latter finding was observed specifically for 
objects that were encountered passively. Thus, task relevance 
appears to shift the balance between semantic knowledge and 
episodic memory in favor of the actual episodic memory trace. 
Passively perceived items (i.e., task-irrelevant) show a weaker 
episodic memory trace compared to objects that were interacted 
with (task-relevant), which in turn showed a stronger episodic 
memory trace as predicted by the enactment effect (Roberts 
et al. 2022; Zöllner et al. 2023). This effect might be mediated 
by attentional mechanisms. While the influence of semantic 
knowledge on the content of episodic memory retrieval has 
been demonstrated at the behavioral level, its neural correlates 
remain unclear. In addition to personal factors such as a priori 
semantic knowledge and personal relevance influencing what is 
retrieved episodically, situational factors such as current mood 
and acute stress may further impact episodic memory retrieval 
and, relatedly, the semantic bias (Shields et al. 2017; Wolf 2017). 
Prior studies found cortisol to be associated with impaired ep-
isodic memory retrieval and decreased brain activity in the 
hippocampus during retrieval processes (Oei et al. 2007), but it 
is unclear whether this results in systematic changes in the se-
mantically biased retrieval. Thus, the current study aims to shed 
light on the balance between semantic information and episodic 
memory during retrieval and its neural underpinnings, as well 
as how both personal factors (e.g., attentional mechanisms) and 
situational factors (e.g., cortisol) can shift this balance in favor of 
a semantic bias. To this end, we developed a task that introduces 
a conflict between the two sources of information.

1.1   |   Semantic Bias in Episodic Memory Retrieval

Prior studies investigating the influence of semantic informa-
tion on episodic memory retrieval have used congruency manip-
ulation, that is, placing some items at odds with their expected 

location. The findings revealed that prior knowledge typically 
leads to enhanced memory for congruent compared to incon-
gruent items (Bein et al. 2015; Laurent et al. 2020; van Kesteren 
et al. 2012; Zöllner et al. 2023). Nevertheless, the likelihood of 
correctly retrieving incongruent objects can be selectively en-
hanced by manipulating attentional mechanisms, that is, ma-
nipulating task relevance, increasing saliency, or by placing 
objects in highly surprising locations (Greve et al. 2019; Quent 
et al. 2022; van Kesteren et al. 2012), resulting in stronger ep-
isodic memory traces and consequently a weaker semantic 
bias. To start with, incongruently encountered objects take up 
more attention compared to congruent objects during visual 
scene perception (Coco et al. 2020). Multiple factors determine 
whether encoded information is transferred into a strong epi-
sodic memory trace. In this study, we are specifically interested 
in the spatial recall of incongruent objects with weaker episodic 
memory traces. In a prior behavioral study, we demonstrated 
that incongruent objects which were not placed in their correct 
episodic location were more likely to be placed in the seman-
tically fitting room rather than in an unrelated one (Zöllner 
et al. 2023). Thus, we found a two-fold semantic bias: first, by 
showing that prior knowledge enhanced memory for congru-
ently encountered objects, and second, by showing that incor-
rectly placed incongruent objects were more likely to be sorted 
to the semantically fitting rather than to the unrelated room. 
Importantly, by manipulating attention and denoting half of the 
objects as task-relevant, we demonstrated that semantic bias was 
stronger for task-irrelevant objects, for which a weaker episodic 
memory trace was expected. We predict that the current study 
can behaviorally replicate these findings.

1.2   |   Neural Correlates of Episodic and Semantic 
Memory Representations

Disentangling episodic and semantic information at the neural 
level remains a key challenge. Multivariate approaches such as 
representational similarity analysis (RSA) allow us to investigate 
representations of individual events by estimating the similarity 
of activation patterns across voxels in a region of interest be-
tween two stimuli or events (Chadwick et al. 2010; Kriegeskorte 
and Kievit  2013; LaRocque et  al.  2013; Xue  2018). Although 
various studies using RSA have demonstrated a pivotal role 
for the hippocampus in episodic memory retrieval (Liang and 
Preston 2017; Libby et al. 2019; McKenzie et al. 2014), investi-
gating the link between representational similarity in the hip-
pocampus and behavioral memory performance has revealed 
mixed results. Some studies suggest relative increases (Deuker 
et  al.  2016; Dimsdale-Zucker et  al.  2018), but others find de-
creases in pattern similarity (LaRocque et al. 2013; Pidgeon and 
Morcom 2016; Wing et al. 2020). Increased similarity has been 
observed for stimuli which share a temporal and spatial context, 
i.e., pattern integration (Deuker et al. 2016; Libby et al. 2019), 
implicating a binding or integration of context-related stimuli. 
However, other studies note a decrease in hippocampal pattern 
similarity between objects sharing a context, indicating a dif-
ferentiation (i.e., pattern separation) between individual stimuli 
to reduce interference during retrieval (Chanales et  al.  2017; 
Dimsdale-Zucker et  al.  2018). Recent findings suggest that in 
particular, a high overlap in content or context leads to a de-
crease in similarity for episodically related stimuli (Brunec 
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et  al.  2020). These diverse results, regarding both higher and 
lower representational similarities, can be linked to different 
processes in hippocampal substructures. The functioning of 
the hippocampus differs along its long-axis, with the anterior 
part being more involved in pattern integration and similarity, 
and conversely, the posterior part being more involved in sepa-
ration processes and differentiation. These distinct representa-
tional patterns in hippocampal subfields can also be present at 
the same time (Dimsdale-Zucker et al. 2018). Additionally, dif-
ferences in task demand explain hippocampal involvement in 
both the integration of related memories and pattern separation 
processes, as both processes can be beneficial for later memory 
retrieval (Brunec et  al.  2020). RSA can further be used to in-
vestigate reinstatement effects (i.e., pre to post encoding simi-
larity) by comparing neural pattern similarity across the first 
encoding of a stimulus and its retrieval, and these effects have 
been linked to memory accuracy (Bird et al. 2015; Fandakova 
et al. 2019; Liang and Preston 2017; Tompary and Davachi 2017; 
Tompary et  al.  2016). Thus, neural reactivations of the same 
stimulus could strengthen differentiated stimulus-specific rep-
resentations in the hippocampus. Naturally, memory represen-
tations—neural substrates of past events—depend on a wide 
network of brain regions, among which prefrontal and sensory 
regions play an important role (Renoult et al. 2019; Tompary and 
Davachi 2017).

While the role of the hippocampus in episodic memory is 
widely studied, neural correlates of semantic bias remain 
sparse. Neural correlates of semantic information are thought 
to be hippocampus-independent in most traditional models of 
memory (Nadel and Moscovitch 1997). However, findings of so-
called concept-cells, which fire with the perception of a specific 
semantically consolidated stimulus in the medial temporal lobe, 
suggest at least a partial involvement of hippocampal structures 
in the representation of semantic information (Quiroga 2012). 
Furthermore, there is evidence for hippocampal recruitment in 
semantic processing tasks when spatial information is required 
(Sheldon and Moscovitch 2012). The question remains: will rep-
resentational similarities in the hippocampus reveal differences 
between episodic and semantically biased event retrieval?

In investigating semantic processing, a special role is attributed 
to the ventral visual stream (VVS), which has been shown to 
process object categories (Coggan et al. 2016; Heinen et al. 2024; 
Kravitz et al. 2013). However, it has been argued that selectivity 
for semanticized object categories in VVS could also be reduced 
to shared visual properties instead of semantic relations be-
tween objects belonging to the same category (Rice et al. 2014; 
Watson et  al.  2014). Contrastingly, when comparing objects 
sharing shape or semantic category, higher similarities were ob-
served between objects belonging to the same semantic category 
compared to objects belonging to different semantic categories 
in the lateral occipitotemporal cortex (LOC), lingual gyrus, and 
other parts of VVS, irrespective of their visual similarity (Bartha 
et al. 2003; op de Beeck et al. 2019; Bracci and op de Beeck 2016; 
Devereux et al. 2013; Peelen and Downing 2017). These findings 
cast doubt on the theory that visual feature processing is solely 
responsible for category-similarity in VVS. Therefore, whether 
semantic similarity along the VVS will lead to more errors if a 
priori knowledge is used during retrieval, instead of episodic 
memory, remains to be investigated.

1.3   |   Episodic Memory and Stress (Hormones)

In addition to personal factors, situational factors can influence 
the formation of episodic memory traces, as well as access to 
them. Stress is a major factor impacting memory. Episodic mem-
ory retrieval has been shown to be impaired after exposure to a 
real or anticipated threat (Shields et al. 2017; Wolf 2017). Studies 
targeting the diverse biological mechanisms of this effect found 
that the release of glucocorticoids in particular is associated 
with impairments in episodic memory retrieval. Inducing real 
stress in laboratory settings remains challenging, and the phar-
macological application of cortisol has been shown to mimic 
the impairing effects of stress on retrieval in several studies 
(De Quervain et  al.  2000; Kirschbaum et  al.  1996; Tollenaar 
et al. 2009). Impairing effects were, for example, found during 
tasks that involved free recall (De Quervain et  al.  2000; 
Kuhlmann et  al.  2005; Tops et  al.  2004), recognition memory 
(Diekelmann et  al.  2011), and spatial memory (Kirschbaum 
et al. 1996). However, there remains some controversy regarding 
the generalizability of this effect. Previous findings demonstrate 
that cortisol intake led to impaired associative memory, spe-
cifically in men, but did not affect item memory itself (Antypa 
et al. 2022; Merz and Wolf 2017). Nongenomic (i.e., rapid) stress 
hormone effects are associated with an increase in amygdala 
activity, disruption of prefrontal activity, and enhancement of 
hippocampal plasticity, leading to an impairment in memory 
retrieval of unrelated information (Gagnon and Wagner 2016). 
Contrastingly, genomic (i.e., slow) glucocorticoid effects led to 
reduced hippocampal plasticity, modulated amygdala and pre-
frontal functioning, and were associated with impaired mem-
ory retrieval of unrelated information as well (Gagnon and 
Wagner  2016). With regards to semantic bias, Diekelmann 
et  al.  (2011) showed not only hindered recognition of correct 
memories but also a reduction in susceptibility to false memo-
ries, arguing that episodic-based reconstruction of past events 
might be hindered by pharmacological cortisol administration. 
Thus, we aimed to investigate whether cortisol, in contrast to 
task relevance, would increase the semantic bias and shift the 
balance from episodic retrieval toward an increase in false, se-
mantically biased memories.

1.4   |   Summary

Combining analyses of behavioral and neural response pat-
terns with cortisol administration, the current study inves-
tigates memory retrieval when there is conflict between 
episodic memory and semantic information. To this end, 
participants navigated through a virtual environment, in 
which some objects were placed according to their expected 
semantic category (i.e., a teddy bear in the bedroom; congru-
ent) while others were placed in unusual places (i.e., a toaster 
in the bathroom; incongruent). We hypothesize that cortisol 
administration prior to retrieval will impair episodic mem-
ory retrieval. We also predict that this impairment will con-
sequently influence the extent to which participants rely on 
their semantic knowledge and succumb to a semantic bias. 
This should be reflected in participants placing erroneously 
retrieved incongruent objects into their semantic (expected) 
room (spatial memory). We also expect memory performance 
to be reflected in the neural pattern similarity between objects 
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pre- compared to post-encoding (pattern reorganization), es-
timated with functional magnetic resonance imaging (fMRI). 
We expect pattern similarity to be shaped by semantic cate-
gory affiliation in regions relevant for semantic memory rep-
resentation pre-encoding. Post-encoding, we hypothesize that 
pattern similarity will be predicted by the participants' expe-
rience during encoding. However, since cortisol is expected 
to hinder memory retrieval and not impact the consolidated 
memory representation itself, we predict that the accuracy of 
behavioral memory retrieval will be a better predictor of neural 
pattern similarity in the placebo group but a worse predictor 
of memory performance in the cortisol group. To investigate 
neural correlates of episodic memory, we focused on the ante-
rior and the posterior hippocampus (aHC and pHC). For the 
semantic bias, we targeted the LOC and the lingual gyrus as 
markers for semantic object category selectivity. Considering 
that memory retrieval is widely distributed across the brain, 
we conducted a whole-brain searchlight analysis to further 
understand which regions are involved when individuals rely 
on prior semantic knowledge during uncertain situations.

2   |   Materials and Methods

The study was approved by the local medical ethics commit-
tee of the Ruhr University Bochum, Reg.-No. 18-6368 and was 
conducted in accordance with the Declaration of Helsinki. The 
current study and analysis were preregistered in a project at 
the Open Science Framework (OSF), accessible under the link: 
https://​osf.​io/​zvr2n/​?​view_​only=​9992e​dc23e​7b45b​d99ba​e9bde​
ecf6f3c. We share raw data and code under the following link: 
https://​osf.​io/​5k3mx/​​.

2.1   |   Sample

Our sample consisted of N = 60 healthy, male participants, all of 
whom fulfilled predefined inclusion criteria: We only included 
right-handed participants, aged between 18 and 35 years with a 
normal BMI between 18 and 30 kg/m2. We ensured fluency in 
the German language for the sake of our language-dependent 
tasks. All participants were in good general health (i.e., no acute 
or chronic, currently treated or impairing diseases, and no his-
tory of psychiatric or neurological diseases) and had normal or 
corrected-to-normal vision. We excluded participants suffering 
from motion sickness to avoid distractions during the virtual 
game task. Since we manipulated cortisol levels through cor-
tisol intake and since we wanted to exclude further influences 
from varying hormone levels between participants: participants 
were male (i.e., not influenced by the female hormonal cycle, 
Merz and Wolf 2017), reported no regular hormone intake and 
did not work in night shifts. Low-risk fMRI measurements were 
ensured by participants being free of non-removable metal, 
hearing impairments, fear of small spaces, prior occupation 
in a metal-working environment, and tattoos not classified as 
risk-free.

We estimated the sample size by conducting an a priori power 
analysis using G*Power (Faul et  al.  2007) with a medium ef-
fect of f = 0.3, a Type I error of α = 0.0001 (acknowledging that 
correction for multiple comparisons was probably necessary 

for fMRI analyses) and a power of 1 − β = 0.8 for a repeated-
measures ANOVA with a within-between interaction for two 
groups (cortisol/placebo) and 4 repeated measures (congruent/
incongruent × task-relevant/task-irrelevant). The resulting sam-
ple size of 58 was increased to 60 for reasons of expected drop-
out. Reasons for exclusion during ongoing data acquisition on 
the first day were technical failure (N = 1) and sickness or in-
disposition of participants (N = 4). Excluded participants (N = 5) 
were replaced with additionally collected participants. Thus, 
we have a final sample of 60 participants. Especially in light of 
a lack of reliable functions to calculate fMRI power for RSA, 
we made sure that this number was consistent with previous 
studies using the same behavioral design (Zöllner et  al.  2023) 
or analysis methods, specifically RSA (Deuker et al. 2016; Lim 
et al. 2023) and cortisol application (Het et al. 2005). Participants 
were right-handed and aged between 18 and 34 years (M = 24.38, 
SD = 4.10). Importantly, both groups were comparable with re-
gard to age (cortisol: M = 24.53, SD = 4.23, placebo: M = 24.23, 
SD = 4.03; t(57.864) = 0.281, p = 0.780, d = 0.073), body mass 
index (BMI, all: M = 24.16, SD = 2.72, cortisol: M = 24.00, 
SD = 2.62, placebo: M = 24.31, SD = 2.85; t(57.579) = 0.432, 
p = 0.668, d = 0.111) and gaming experience (all: 55% with-, 45% 
without regular experience, cortisol: 56.67% / 43.33%, placebo: 
53.33%/46.67%; Χ2(1) = 0, p = 1, w = 0.03). Regular gaming expe-
rience comprised gaming on a 4-level scale from at least once per 
month up to several hours a day (monthly, weekly, several times 
per week, daily). To ensure that the level of gaming experience 
did not influence subsequent memory, we conducted ANOVAs 
predicting memory performance, which revealed no effect of 
gaming experience on later memory (included in the Supporting 
Information S2).

All participants received compensation of 10€ per hour or course 
credits. We advertised our study at the Ruhr University Bochum, 
using social media channels and other local resources.

2.2   |   Cortisol Administration

Participants were randomly assigned to either the placebo 
(N = 30) or the cortisol group (N = 30). Each participant in the 
cortisol group received two 10 mg hydrocortisone tablets on the 
second day of the experiment, while the placebo group received 
two tablets of a visually identical placebo. Experimenters were 
not aware of the participants' group affiliation (double-blind). 
To assess physiological responses following the intake of cor-
tisol or placebo, we collected saliva samples using Salivettes 
(Sarstedt, Nümbrecht, Germany) at the following points in time 
with respect to tablet intake: T − 2 (baseline), T + 30, T + 95, 
T + 105. Saliva samples were stored at −20°C until analyzed 
with a commercial enzyme-linked immunosorbent assay (IBL 
International, Hamburg, Germany). Intra-assay coefficients 
of variation (CVs) were below 6.5% and inter-assay CVs below 
8.25%. To control for everyday influences on cortisol levels, we 
asked participants to refrain from doing unusually intensive 
sports, consuming alcohol, drugs, or painkillers 1 day prior to 
and on testing days. Food intake should have taken place prior 
to measurement, but on the day of cortisol administration not 
within 1.5 h before. All measurements were realized between 
1 p.m. and 8 p.m. to control for effects of the circadian rhythm 
on cortisol levels.
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2.3   |   Materials and Virtual Environment

The encoding took place in a virtual environment (encoding 
virtual environment task, EVE task). The use of a virtual envi-
ronment combines the advantages of having high experimental 
control applicable in fMRI settings but also preserving ecolog-
ical validity (S. A. Smith  2019). Using the game engine Unity 
(Version 2019.1.3, Unity Technologies, San Francisco), we de-
signed a virtual three-room apartment, consisting of a character-
istically furnished kitchen, bathroom, and bedroom, in addition 

to a neutrally furnished corridor. Packages acquired for this 
purpose are cited in the Supporting Information S3. During en-
coding, participants navigated through the environment using 
an MR-compatible button box and conducted a series of 12 tasks 
within the environment (i.e., ‘Go to the toaster and make your-
self a sandwich’). In total, 24 objects were placed in the three 
rooms of the virtual apartment. The objects were either part of 
acquired packages from the Unity Asset Store or self-made in 
the 3D-modeling program Blender (Version 2.83, https://​www.​
blend​er.​org). An overview of objects is provided in Figure 1A.

FIGURE 1    |    Overview of experimental procedure. (A) Overview of objects central to encoding and retrieval, sorted by semantic room affiliation. 
All objects were included in the virtual environment during retrieval. We randomly had objects appear congruent or incongruent. Half of the objects 
were task-relevant (solid line), the other half was task-irrelevant (dashed line). (B) Visualized is the methodology from the first two of three days of 
data collection. Data collection on the first day (PVT-pre-encoding) took place in the MR scanner. The second day of data collection (retrieval) was 
only partly conducted in the MR scanner (recognition task and PVT-post-encoding). Prior to fMRI measurements, participants received cortisol or 
placebo treatment, had a waiting period of 30 min, and conducted a free recall. After fMRI measurements, participants underwent the spatial recall 
task (SRT) and temporal recall task. Not visualized but analog to the first retrieval is the second retrieval, which was conducted online 28 days after 
encoding.
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2.4   |   Encoding Task

During encoding, participants navigated through a virtual 
apartment using an MR compatible button box and saw the 
screen using a mirror system. In the virtual apartment, par-
ticipants sequentially conducted 12 tasks. Each of the tasks 
focused on a specific object that was placed in the environ-
ment. Participants were first asked to search for the object, 
approach it, and press a button for 5 s in order to complete the 
task. A progress bar with an accompanying note visualized 
the duration of each task. The tasks were meaningful, that is, 
ran under the cover story of cleaning up the apartment for a 
date (e.g., “Go to the toaster and make yourself a sandwich.”, 
see Supporting Information  S1 for an overview of all tasks). 
Half of the objects included in the virtual apartment were rele-
vant to the sequence of actions (task-relevant) and half of them 
were just encountered passively (task-irrelevant). Importantly, 
the version used in this study had fixed task-relevant objects 
and fixed task-irrelevant objects (i.e., across participants, the 
coffee machine was always task-relevant while the sleeping 
mask was task-irrelevant. This is depicted with dashed and 
solid lines in Figure 1A). The environment and stimuli have 
been previously used in Zöllner et al. (2023). In a behavioral 
replication study, we verified that random task relevance 
assignments among objects resulted in the same behavioral 
pattern (Zöllner et  al.  2023). Additionally, we validated cat-
egory affiliation of objects in a separate pilot study, included 
in Supporting Information S1. That is, objects appeared either 
in a congruent/expected or in an incongruent/other-than-
expected room. For each participant, the objects were pseudo-
randomly placed across the three rooms, with four congruent 
and four incongruent, and likewise four task-relevant and four 
task-irrelevant objects per room, equally divided among con-
gruent and incongruent object placements and balanced for 
semantic room affiliation. Prior to the main encoding task, 
participants underwent a tryout phase of approximately 6 min, 
in which they were placed in the same apartment, learned how 
to navigate in it, and encountered four example objects, two of 
which they interacted with. Importantly, the objects from the 
tryout phase were later used as example objects to illustrate 
how the spatial recall task works.

2.5   |   Experimental Procedure

Data collection took place between 08/2021 and 10/2022. The 
experimental procedure included 3 days of data collection, 
two of which were consecutive and in-person at the University 
Hospital Bergmannsheil in Bochum. The last session took 
place 28 days after the first session and was conducted online. 
An overview of the experimental procedure is provided in 
Figure 1B. Note that we report more detailed methods and re-
spective analyses for the free recall task, temporal recall task, 
and late recall in the Supporting Information  S1 and S2, as 
they are not central to the claims of this paper and served as 
supporting analyses.

Day 1: Upon arrival on the first day of data acquisition, partic-
ipants gave written informed consent and were prepared for 
the fMRI measurement. During fMRI data acquisition, two 
blocks of a picture viewing task (PVT-pre) were conducted. In 

short, PVT consisted of two scanning sessions, each of which 
contained six blocks during which images were presented. Each 
block contained 24 pictures of objects. Thus, each of the 24 ob-
jects was presented 12 times during PVT. The depicted objects 
were central to later encoding, as they were part of the encoded 
episode. Participants had the task to search each picture for a fly 
and were asked to be furthermore attentive to the objects. Flies 
were included in 5% of images, which were later excluded from 
further analyses.

The EVE task followed.

Participants took, on average, M = 8.271 min (SD = 1.751) to con-
duct all tasks (with M = 37.815 s, SD = 31.432, per task). Prior to 
the EVE task, participants had the chance to get to know the 
controls and environment. To this end, we placed four (purely 
congruent) example objects in the environment, two of which 
were task-relevant, which gave participants a chance to get ac-
customed to the controls. This exploration phase lasted approx-
imately 6 min and took place during structural T1-weighted 
image acquisition.

Day 2: The second day included cortisol or placebo admin-
istration and saliva sample collection at four different time-
points. Each saliva sample was accompanied by filling in 
the Positive and Negative Affect Scale (PANAS, Breyer and 
Bluemke 2016). Prior to administration, participants provided 
a baseline saliva sample. A participant then had a 30 min 
waiting period for cortisol concentrations to rise. During 
that time, a short demographic questionnaire was presented, 
participants generated an individual code in order to match 
their online responses reliably, they read the instructions for 
the subsequent task and were prepared for the fMRI mea-
surement. In the remaining time participants either solved a 
sudoku puzzle or colored a mandala, depending on their free 
choice (47 participants chose a sudoku). Afterwards, partici-
pants provided a second saliva sample.

Next, participants were brought to the MRI scanner and con-
fronted with a standard recognition task during the first fMRI 
session. During this task, pictures of the 24 encoded objects and 
respectively 24 realistic lures were presented (see Supporting 
Information  S1). Each image presentation was followed by an 
old-new rating, questioning whether the object was part of the 
episode or not. In cases of old ratings, participants indicated 
which room they remembered to have encountered the object. 
Finally, we asked participants for their confidence in room sort-
ing. After recognition, participants were again confronted with 
two fMRI sessions of PVT (PVT-post). Outside of the scanner, 
participants provided a third saliva sample and were then asked 
to first conduct a spatial recall task (SRT). The SRT was a drag-
and-drop task in which participants were asked to sort all 24 
objects to the location they remembered to have seen them on a 
birds-eye view depiction of the virtual apartment they encoded 
on the day before. They were explicitly instructed that, despite 
the change in perspective, the depiction of the apartment and 
furniture is exactly equal to the apartment they experienced the 
day before. Participants were free to place the objects in what-
ever order they preferred. A final saliva sample concluded the 
testing day. Behavioral pre- and post-fMRI procedures took 
place in a preparation room at the hospital.
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2.6   |   Preprocessing and Statistical Analyses

Software: We used Python (3.0.0) to prepare raw data for fur-
ther analyses and used pandas (McKinney 2010) and numpy 
(Harris et  al.  2020). (f)MRI data were prepared and prepro-
cessed with MATLAB (2020b, https://​www.​mathw​orks.​
com/​) based SPM12 (FIL Methods Group) toolbox. We used 
FreeSurfer (v6.0.0, https://​surfer.​nmr.​mgh.​harva​rd.​edu/​) for 
brain extraction. Searchlight analyses were further conducted 
with FSL (Jenkinson et al. 2012). We used Python-implemented 
scikit-learn toolbox (Pedregosa 2011) for multidimensional 
scaling and plotted results with matplotlib (Hunter  2007). 
All statistical analyses and graphical data visualization were 
conducted using R (R Core Team 2022) implementation in R-
Studio (RStudio Team 2020). All R-packages in use for our 
analyses are summarized in the Supporting Information S4. 
Figures and parts of the stimulus material were designed with 
inkscape (Inkscape 2022) and biorender (http://​biore​nder.​
com).

Statistical approaches: To compare mean values between or 
within subjects, we conducted t-test comparisons reporting 
effect sizes calculated by Cohen's d or conducted Wilcoxon 
Signed Rank tests using R-package rstatix (Kassambara 2021) 
as a non-parametric alternative when assumptions for t-
tests were violated. For multi-factor comparisons of mean 
values, we used ANOVAs using R-package afex (Singmann 
et al. 2016), reporting effect sizes with partial eta square (pes). 
We estimated linear mixed models (LMMs) for analyses at the 
object level. Within each LMM, we accounted for clustering 
within individual participants by setting subjects as higher-
level terms, consequently allowing for random intercepts and 
controlling for this random factor. We used the lmer-function 
from the R-package lmerTest (Kuznetsova et  al.  2017) to fit 
the model and used lmer-Test anova-function to estimate the 
significance of individual model parameters. Thus, F-values 
were estimated by Satterthwaite's degrees of freedom method. 
We used type III sum of squares to estimate effects while con-
trolling for other main effects or interaction parameters. We 
made sure that the variance inflation factor did not exceed 
5 to avoid multicollinearity. For LMMs, we calculate Cohen's 
f2 as effect sizes using the R-package effectsize (Ben-Shachar 
et  al.  2020). Cohen's f2 indicates the proportion of variance 
an individual predictor accounts for and has been specifi-
cally suggested for the use of LMMs (Lorah  2018). Across 
models, we applied the 0.05 significance threshold to assess 
significance and used Holm correction to correct for multiple 
comparisons. Additionally, we included the predictor ‘group-
affiliation’ in all models concerning data acquired on day 2 to 
analyze effects of cortisol.

Behavioral Data Analysis: We sought to replicate the behav-
ioral findings from our previous study (Zöllner et  al.  2023). 
We excluded objects which were not recognized as ‘old’ in 
the recognition task from all further behavioral analyses. On 
average, participants retrieved 18.41 of 24 objects (min = 10, 
max = 23), which resulted in a total number of 1105 objects 
being the basis of this analysis (thus, on average 5.58 (min = 1, 
max = 14) and a total of 335 objects were excluded as they were 
not recognized). We first analyzed whether congruence (a pre-
dictor with two levels, for example, the coffee machine in the 

kitchen—congruent, vs. the toaster in the bathroom—incon-
gruent) and task relevance (likewise a predictor with two lev-
els, for example, the toaster, which was part of the sequence of 
action—task-relevant, vs. the towel, which was passively en-
countered but not interacted with—task-irrelevant) could pre-
dict memory accuracy in the SRT. To this end, we estimated 
an LMM with congruence and task relevance predicting drop 
error (i.e., distance between the correct and dropped location). 
Then, we looked at room sortings and analyzed whether in-
congruent objects were proportionally more likely to be placed 
in the semantically fitting room rather than in the unrelated 
room, separately for task-relevant and task-irrelevant objects. 
With regards to the exclusion of incongruent objects based on 
the recognition task, participants did not recognize 2.596 in-
congruent objects (min = 1, max = 7), leaving 9.533 objects as 
the basis for this analysis (min = 5, max = 12). As the propor-
tions of room placements in spatial recall were not normally 
distributed, we used Wilcoxon Signed Rank tests for statistical 
comparisons.

2.7   |   Physiological Data Analysis

First, we checked whether cortisol concentrations increased in 
the cortisol group compared to the placebo group. Following 
standard procedures, we aimed at excluding data deviating 
more than three standard deviations and checked for normality. 
There was no data excluded based on this criterion. However, 
there was a drop-out of N = 12 data points from N = 10 partic-
ipants in consequence of non-analyzability of the saliva sam-
ples (i.e., two participants had only N = 2 analyzable samples). 
Thus, the resulting data set consisted of 58 samples at base-
line (cortisol: 28 samples, placebo: 30 samples), 56 samples at 
+30 min. (cortisol: 26 samples, placebo: 30 samples), 59 samples 
at +90 min. (cortisol: 30 samples, placebo: 29 samples), and 55 
samples at +120 min. (cortisol: 2 samples, placebo: 30 samples). 
Thus, no participant had to be fully excluded based on overall 
physiological data analysis. Subsequently, an LMM controlling 
for the random factor subject was conducted with cortisol con-
centrations predicted by time, group affiliation, and an interac-
tion of both. For post hoc comparisons, we conducted pairwise 
t-tests.

2.8   |   fMRI

Acquisition: MRI images were acquired using a 3T scanner 
with a 32-channel head coil (Philips Achieva 3.0 T X-Series, 
Philips, the Netherlands). Blood oxygenation level-dependent 
(BOLD) contrast images were acquired with a T2-weighted 
gradient echo EPI sequence with 2.5 mm isotropic resolution 
(TR = 2500 ms, TE = 30 ms, FA = 90°, FOV = 96 mm × 96 mm, 45 
transversal slices in ascending order without slice gap). The ac-
quisition time (TA) differed between the tasks. Additionally, a 
high-resolution whole-brain structural brain scan was acquired 
using a T1-weighted sequence at 1 mm isotropic resolution (FOV: 
240 mm × 240 mm, transversally oriented slices) with a TA of 
6 min 2 s. In total, participants underwent six functional runs—
two during an initial picture viewing task (PVT-pre), one during 
the encoding phase (EVE task), one at the second day during 
the recognition task, and finally two during another PVT(-post).
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ROI selection: Subject-specific anatomical regions of interest 
(ROIs) were extracted from structural scans using the par-
cellation procedure embedded in FreeSurfer (v6.0.0, https://​
surfer.​nmr.​mgh.​harva​rd.​edu/​). Extracted ROIs were based on 
the Desikan–Killiany atlas (Desikan et al. 2006). Specifically, 
we chose the hippocampus (and separated it into anterior and 
posterior), lingual gyrus, LOC, and ventral visual stream (par-
ahippocampal, pericalcarine, cuneus, fusiform gyrus, lingual 
gyrus, and LOC).

Multivariate Pattern Analysis within ROIs: The current study 
focuses on the fMRI data from the PVT to analyze the (change 
in) neural object representations after encoding and relate it 
to behavioral recall data (see Figure  2A). We preprocessed 
the data using SPM12 (FIL Methods Group). Preprocessing 
included slice time correction and spatial realignment, but 
no spatial smoothing in order to conduct multivariate pattern 
analyses (MVPA). We subsequently coregistered all ROIs to 
functional space. For MVPA, we have set up a general linear 
model modeling all objects, the fly, and motion parameters 
as regressors. To account for motion, we estimated D-Vars 
and framewise displacement (FD) values for each volume for 
each participant. We applied the approach from Afyouni and 
Nichols  (2018) and estimated significantly affected volumes. 
Those were inserted as additional regressors in our GLM, elim-
inating influences due to excessive motion. Participants, for 
whom in consequence less than two presentations of an object 

remained, were excluded from further analyses. Additionally, 
participants who missed more than three flies in one of the 
four runs were excluded from further analyses. This resulted 
in a total exclusion of: PVT-pre: N = 3, PVT-post: N = 6, PVT-
change: N = 9. To additionally reduce the influence of noisy 
voxels, we obtained t-values by dividing resulting beta-maps 
with the residual matrix.

Across all voxels of a ROI, we correlated each object's acti-
vation estimate of one run with each object's estimates from 
the other run for each day separately, estimating Spearman's 
correlation coefficient. We used Fisher z-standardization on 
the correlation patterns (see Figure  2A). For each ROI, we 
thereby obtained one correlation matrix across objects for 
each day (i.e., day 1 (pre-encoding): object × object and day 2 
(post-encoding): object × object), reflecting pattern reorgani-
zation (pre-post-encoding similarity: see Figure 2B). To ana-
lyze representational change (i.e., what has changed between 
pre-encoding PVT and post-encoding PVT), we subtracted the 
pre-encoding matrix from the post-encoding matrix to obtain 
a PS-change matrix (see Figure 2C). In an additional explor-
atory approach, we analyzed how similar an object was repre-
sented to itself pre- compared to post-encoding. For this, we 
co-registered post-encoding betas to pre-encoding functional 
space and calculated representational similarity with the up-
standing procedure between pre- and post-encoding object 
presentation. Importantly, we correlated activation estimates 

FIGURE 2    |    Visualization of fMRI analysis approaches to obtain neural similarity patterns. Depicted is a visualization for fMRI pattern similar-
ity (PS) values included in analyses. (A) The basis of our PS analyses are all four PVT sessions, two were conducted pre- and two post-encoding. For 
each ROI and searchlight sphere, we extracted all voxel-activations for each object's presentation. Voxel activations for each object were averaged 
within sessions for repeated presentations. We estimated Spearman's R for each object's voxel activation pattern between sessions within 1 day or 
between days. (B) We analyzed PS between object pairs pre-encoding (PS pre-encoding), PS post-encoding and PS for object pairs pre- correlated 
with post-encoding (PS pre-post-encoding, i.e., pattern reorganization). (C) We estimated representational change using the difference value between 
PS post- and PS pre-encoding (PS change).
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of both sessions on the first day with each session on the sec-
ond day and estimated the average. Thus, we obtained a cross-
correlation matrix representing how similar an object was to 
itself pre- versus post-encoding (see Figure 2B).

Statistical analyses of fMRI data: First, we checked whether 
pattern similarity pre-encoding (day 1) could be predicted by 
semantic category affiliation, specifically in the VVS overall, 
in the LOC and the lingual gyrus as relevant parts of the VVS 
for semantic representation, and the hippocampus (HC). To 
this end, we used an LMM approach including subjects as 
random factors. This analysis was conducted on N = 57 par-
ticipants, with a total of 15,732 object pairs (276 object pairs 
per participant; all possible object combinations of 24 objects 
without duplicates). For each ROI, representational similarity 
scores for all object pairs were predicted by semantic room 
category with the two levels ‘same semantic room category’ 
and ‘different semantic room categories’. We additionally con-
ducted multidimensional scaling as a visualization approach 
(Lin et  al.  2019). That is, the higher dimensional space (i.e., 
pairwise similarity matrices for all participants) was mapped 
to a lower-dimensional space (i.e., two-dimensional space 
using Euclidean distance), while the distance between points 
was preserved as much as possible.

Next, we looked at pattern similarity post-encoding. In light 
of the key manipulation in this study design (i.e., presenting 
objects incongruently and investigating whether objects were 
retrieved correctly or according to their semantic category), 
we specifically looked at the neural pattern similarity of an 
incongruent object to congruent objects of the same semantic 
category post encoding (i.e., how similar was the toothbrush 
presented in the kitchen to the hairbrush, shampoo, towel, 
and hairdryer presented in the bathroom?). How did the se-
mantic representation of an object change following the in-
congruent encounter? We used two approaches to compare 
neural pattern similarity at retrieval in ROIs relevant for 
memory representation (i.e., pHC and aHC, lingual gyrus, and 
LOC): First, according to our behavioral findings in the pre-
vious study (Zöllner et al. 2023), task-relevant objects showed 
increased memory performance. Thus, we compared mean 
pattern similarity of incongruent task-relevant objects to their 
semantically congruent counterparts with mean pattern sim-
ilarity of incongruent task-irrelevant objects to their semanti-
cally congruent counterparts. The second approach focuses on 
the room-choice of participants. We compared mean pattern 
similarity of correctly retrieved incongruent objects to their 
semantic congruent counterparts with mean pattern similar-
ity of incongruent objects placed in the semantically fitting 
room to their semantic congruent counterparts. In this way, 
we can estimate how a semantic choice in cases of weak epi-
sodic memory traces is represented differently compared to a 
stronger episodic memory trace. Post-encoding analyses were 
based on N = 54 participants (N = 27 per group). Of note, all 
participants had six incongruent task-relevant and six incon-
gruent task-irrelevant objects. Regarding room-choices of in-
congruent objects, participants had an average of M = 4.067 
sortings to the semantic room (min = 1, max = 9) and M = 6.217 
sortings to the correct room (min = 3, max = 10). In detail, we 
calculated the average pairwise pattern similarity of an in-
congruent object to all congruently encountered objects of the 

same category (the average value was based on four pairwise 
similarity values per incongruent object). Subsequently, we 
calculated average values across estimated means of all incon-
gruent objects separately for each condition (task-relevant vs. 
task-irrelevant and semantic vs. correct). Then, we conducted 
mixed ANOVAs predicting mean pattern similarity with task 
relevance (task-relevant vs. task-irrelevant), group-affiliation 
(placebo vs. cortisol), and an interaction of both predictors 
(task relevance by group). The same statistical design was 
used to predict mean pattern similarity with room-choice 
(correct vs. semantic), group-affiliation, and an interaction of 
both predictors. In this specific analysis, we did not exclude 
objects that were not recognized in the recognition task be-
cause this analysis focused on the semantic representation of 
incongruent objects.

In the next step, we looked at pairwise pattern similarity change 
between objects predicted by the respective variable of inter-
est. After excluding all object pairs in which at least one object 
was not recognized in the recognition task, these analyses were 
based on a total of 8411 object pairs from N = 51 participants 
(cortisol group: N = 26, placebo group: N = 25; object pairs per 
participant: M = 164.92; SD = 52.57). Chosen ROIs were the aHC 
and the pHC as ROIs relevant for episodic memory representa-
tion, and the LOC and the lingual gyrus as ROIs relevant for 
semantic memory representation. As preregistered, we were 
specifically interested in whether spatial retrieval could predict 
pairwise pattern similarity change between two objects. To this 
end, for each ROI, we estimated two LMMs, in each of which 
cortisol group affiliation was included as a covariate: in a first 
model, we included the dichotomous predictor ‘same or differ-
ent room recall’, and in a second model, we included the con-
tinuous predictor ‘proximity of objects in spatial recall’, because 
two objects might have been retrieved in the same room, but 
on completely opposite corners of this room, while two other 
objects might have been recalled having been directly next to 
each other. Exploratorily, we set up a third LMM and looked 
at whether average confidence of spatial recall (i.e., how sure a 
participant was with each chosen location) influenced pattern 
similarity change for object pairs. Going beyond our preregis-
tered analysis, we were furthermore interested in whether the 
representation of an object changed comparing pre- vs. post-
encoding. Again, excluding objects which were not recognized 
in the recognition task resulted in a total of 939 objects from 
N = 51 participants (M = 18.41; SD = 3.07 objects per participant). 
To this end, we estimated the neural pattern similarity of an ob-
ject pre-encoding with itself post-encoding. We then related pat-
tern similarity to our memory measures, object characteristics, 
and cortisol group affiliation. Thus, we estimated five models 
for each ROI. In each LMM, cortisol group affiliation was in-
cluded as a covariate. In the first model, we predicted pattern 
reorganization with the dichotomous predictor “correct room 
recall.” The second model used the continuous predictor “drop 
error.” The third model predicted pattern reorganization with 
confidence of placement in SRT. A fourth model was estimated 
predicting pattern reorganization with the dichotomous predic-
tor “congruence”, and a final model was estimated with the pre-
dictor variable “task relevance.”

Of note, full model output tables for each analysis and model 
specifications are included in Supporting Information S6–S9.
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Multivariate pattern analysis in searchlights: We conducted a 
whole-brain searchlight analysis in addition to ROI analyses. 
We used previously extracted beta estimates from the first day 
and co-registered the beta estimates from the second day to the 
functional space of the first day. Again, we obtained t-values to 
control for noisy voxels. For the searchlight analysis, only gray-
matter voxels were included by using the subject-specific gray 
matter mask segmented with FreeSurfer (v6.0.0, https://​surfer.​
nmr.​mgh.​harva​rd.​edu/​). Moving through all voxels, we defined 
a sphere radius of 6 voxels, centered at each respective voxel. A 
sphere had to consist of at least 20 voxels to be analyzed further. 
Each valid sphere was then treated as a ROI, and, following the 
same procedure as in the RSA ROI analyses, we extracted simi-
larity matrices pre-encoding and for an object to itself pre- versus 
post-encoding for each searchlight sphere, mimicking the proce-
dure as in previous ROI analyses. We refrained from analyzing 
representational change in searchlight for reasons of limited in-
terpretability. We estimated statistically whether pre-encoding 
similarity between objects could predict category affiliation 
(i.e., same/different semantic room categories). We analyzed 
whether the similarity of an object to itself pre- compared to 
post-encoding could predict memory retrieval (i.e., correct-/in-
correct room) or the characteristic of object encounter (i.e., con-
gruent/incongruent and task-relevant/task-irrelevant). Model 
estimates (i.e., t-values for dichotomous predictors or correlation 
values for continuous predictors estimated with MATLAB's 
corr2 function) were saved for each sphere location to perform 
t-testing against zero. For testing two conditions against each 
other, we saved the mean activation for dichotomous predictors 
for both levels within a sphere, to later statistically contrast the 
two searchlight maps for each dichotomous predictor. Whole-
brain model estimate maps were then normalized to MNI stan-
dard space with SPM12 in order to conduct group-level analyses.

For analyses, a non-parametric version of the one-sample t-
test was conducted with randomize (Winkler et  al.  2014) in 
FSL (version 5.0.9, http://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​) to 
estimate whether model estimate maps significantly differed 
from zero in searchlight spheres. In a second step, we con-
ducted a two-sample paired t-test, specifically contrasting 
activation patterns of dichotomous predictors in pattern re-
organization similarity matrices. Specifically, 5000 random 
sign-flips and threshold-free cluster enhancement (TFCE) 
were used to identify significant clusters across participants 
(S. M. Smith and Nichols 2009). TFCE takes both voxel-wise 
signal strength and extent of neighboring voxels into account, 
while not using an absolute threshold. Results were family-
wise error (FEW) corrected and thresholded at p < 0.05 to con-
trol for multiple comparisons. Anatomical labels were taken 
from the Harvard-Oxford Cortical Structural atlas (Desikan 
et al. 2006).

3   |   Results

3.1   |   Cortisol Concentrations and Negative Affect

We found that while cortisol concentrations increased over 
time in the cortisol group (all t > 7.670, all pHolm < 0.001), result-
ing in a significant group difference at all timepoints except at 
baseline (baseline: t(159) = 0.698, pHolm = 1, other timepoints: 

all t > 12.843, all pHolm < 0.001), the placebo group showed a 
decrease in cortisol between baseline and later timepoints 
(+90 min, t(163) = 3.461, pHolm < 0.01; +120 min, t(163) = 3.256, 
pHolm < 0.05), reflecting the circadian rhythm. Neither was 
there a significant group difference in reported negative affect 
(F(1, 57.977) = 2.673, p = 0.107, f2 = 0.05), which we acquired as 
a control measure, nor did we find a significant time × group 
interaction (F(3, 163.071) = 1.712, p = 0.167, f2 = 0.03). Due to 
the pharmaceutical application of cortisol and as shown in our 
cortisol manipulation check above, we did not have any cortisol 
non-responders. A detailed overview of the statistical analyses 
regarding cortisol concentrations and negative affect is included 
in Supporting Information S5.

3.2   |   Replication of Behavioral Study 
Results—Validity of Design

Overall, we were able to replicate the findings from our previous 
study (Zöllner et  al.  2023), validating the paradigm. Our pre-
vious analyses were expanded by considering group affiliation 
with regard to cortisol administration. We looked at drop error 
as a measure for spatial retrieval accuracy and at the semantic 
bias estimated from the SRT (Figure 3A).

On a behavioral level, drop error was significantly 
lower for congruent as compared to incongruent objects 
(F(1, 1380.9) = 207.013, p < 0.001, f2 = 0.15) and for task-relevant 
as compared to task-irrelevant objects (F(1, 1428.5) = 41.157, 
p < 0.001, f2 = 0.03). Incongruent but not congruent objects 
yielded a significantly higher drop error for task-irrelevant 
as compared to task-relevant objects (interaction effect: 
F(1, 1380.6) = 49.605, p < 0.001, f2 = 0.04; congruent objects: 
t(1420) = 0.241, pHolm = 0.995, incongruent objects: t(1412) = 9.559, 
pHolm < 0.001). That is, spatial retrieval accuracy was compa-
rable among congruently encountered objects, but for incon-
gruently encountered objects, task-irrelevant objects were 
spatially sorted less close to the actual location than task-
relevant objects. There was no difference between the two 
groups (F(1, 1380.9) = 207.013, p < 0.001, f2 = 0.15).

A semantic bias was estimated from the data of the SRT by 
determining in which room an incongruent object has been 
spatially retrieved, and calculating the proportion to which 
objects were sorted to the episodically fitting, semantically 
fitting, or unrelated room. We were able to replicate our pre-
vious findings: 1 day after encoding, participants sorted an in-
congruently experienced object significantly more likely to its 
semantically fitting room rather than to the unrelated room 
(V = 1192.5, pHolm < 0.001). This was not true for task-relevant 
objects (V = 388.5, pHolm = 0.989). We hypothesized that cor-
tisol behaviorally increases the semantic bias in memory re-
trieval. However, we found the same room sorting tendencies 
in both the cortisol and the placebo group: while the propor-
tions of semantically sorted objects were significantly higher 
as compared to unrelatedly sorted objects for task-irrelevant 
objects (cortisol group: V = 285, pHolm < 0.001; placebo group: 
V = 328.5, pHolm < 0.05), there was no such difference for task-
relevant objects (cortisol group: V = 108, pHolm = 1; placebo 
group: V = 89.5, pHolm = 1; in Figure  3B). Thus, cortisol did 
not lead to a behaviorally increased semantic bias in memory 
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11 of 22Human Brain Mapping, 2025

retrieval, though we still find an overall semantic bias in our 
paradigm (see Figure 3B).

3.3   |   Higher Similarity for Objects Belonging to 
the Same Semantic Category Pre-Encoding

Pre-encoding, we expected pattern similarity to reflect the se-
mantic relation between objects: objects belonging to the same 
semantic room category should be more similar to each other 
as compared to objects belonging to different semantic room 
categories in regions of the brain associated with semantic 
knowledge representation. Indeed, we found this effect in the 
ventral visual stream (VVS, F(1, 15,675) = 41.713, pHolm < 0.001, 
f2 = 0.002), specifically the LOC (F(1, 15,675) = 65.344, pHolm 
< 0.001, f2 = 0.004; Figure  4C) and the lingual gyrus 
(F(1, 15,675) = 13.077, pHolm < 0.001, f2 = 0.004). We also used 
multidimensional scaling to visualize the proximity of same 
and different category objects (see Figure 4B). Analyses were 
based on a total of 15,732 object pairs (276 object pairs for 57 
participants). Full results tables for analyzed ROIs are in-
cluded in Supporting Information S6.

3.4   |   Pattern Similarity of Incongruent Objects 
Post-Encoding

We analyzed the semantic representation of an object post-
encoding, thus looking at neural pattern similarity of incongru-
ent objects to congruently encountered objects from the same 
category (see Figure  5A). Supporting Information  S7 includes 
results for all estimated models in these analyses.

Task relevance: In the LOC but no other included ROI (lingual 
gyrus, aHC, and pHC) we found a main effect of task rele-
vance predicting pattern similarity (F(1, 52) = 7.77, pHolm < 0.05, 
pes = 0.130). That is, the mean pattern similarity of incongruent 
objects to their congruent semantic counterparts was higher for 
task-relevant objects compared to task-irrelevant objects (see 
Figure 5C).

Room-placement: We analyzed whether mean pattern similar-
ity of incongruent objects to their semantically fitting category 
counterparts was associated with differences in room-sorting, 
that is, comparing pattern similarity of objects sorted to the cor-
rect room and objects sorted to the semantically fitting room. 

FIGURE 3    |    Behavioral results. (A) Distance from the dropped position to the correct position during spatial recall, depending on task relevance 
and congruence of an object. Task-relevant object locations were significantly better retrieved than task-irrelevant objects, and congruent objects 
were significantly better retrieved than incongruent objects. There was no difference between the cortisol and placebo group. (B) Proportions of room 
sorting for each participant, separately for task-relevant and task-irrelevant objects. The proportion of task-irrelevant objects sorted to the semantic 
room was significantly higher than the sorting to the unrelated room. There was no difference between the cortisol and placebo group.*p < 0.05; 
***p < 0.001.
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12 of 22 Human Brain Mapping, 2025

We found a main effect of room-sorting in the lingual gyrus 
(F(1, 52) = 8.56, pHolm < 0.05, pes = 0.141), but not in the LOC or 
the hippocampus (all pHolm > 0.05). In the lingual gyrus, mean 
pattern similarity of incongruent objects to their congruent se-
mantic counterparts was higher when sorted correctly as com-
pared to when they were sorted semantically (see Figure 5D).

3.5   |   Representational Change Was Predicted by 
the Retrieved Location and Retrieval Confidence

To shed light on the representation of encoded information, we 
related behavioral retrieval accuracy to the representational 
structure post-encoding. Specifically, we estimated the differ-
ence value between pattern similarity post-encoding and pre-
encoding to then analyze the representational change, that is, 
how pattern similarity between two objects has changed post- 
compared to pre-encoding (see Figure  6A). As in behavioral 
analyses on a trial level, we excluded all object pairs for which 
at least one has not been recognized as “old” in the recognition 
task in order to exclude objects which might have not been seen 
at all in the virtual environment. This resulted in a number of 
8411 object pairs from 51 participants included in the analysis, 

with an average of 164.92 (SD = 52.57, min = 45, max = 253) ob-
ject pairs per participant. Exhaustive statistical summary tables 
are included in Supporting Information S8.

The retrieved location in SRT: Analyses revealed no significant 
difference in pattern similarity change contrasting object pairs 
which were remembered in the same or in different rooms in 
all our ROIs (all pHolm > 0.1), and we furthermore found no in-
teraction between group affiliation and same or different room 
recall (all pHolm > 0.1). However, as a more fine-grained mea-
sure we tested for a significant influence of retrieved proximity 
of two objects in spatial recall on pattern similarity change (as 
calculated by the distance between two objects placed in SRT, 
see Figure 6B). Interestingly, in the LOC, a higher retrieved dis-
tance between two objects was accompanied by a decrease in 
pattern similarity (F(1, 8361.2) = 10.019, pHolm < 0.01, f2 = 0.001). In 
the pHC and the lingual gyrus, retrieved distance between two 
objects tended to predict pattern similarity change, though both 
effects did not survive the correction for multiple comparisons 
(pHC: F(1, 8375.5) = 4.825, p < 0.05, pHolm = 0.066, f2 < 0.001; lin-
gual gyrus: F(1, 8362) = 5.231, p < 0.05, pHolm = 0.066, f2 < 0.001). A 
smaller retrieved distance between two objects tended to be as-
sociated with a positive pattern similarity change between two 

FIGURE 4    |    Pattern similarity pre-encoding for same versus different room category object pairs in the lateral occipital cortex (LOC) and the 
lingual gyrus. (A) Schematic overview of pattern similarity (PS) pre-encoding analyses. Object pairs are either from the same or from different se-
mantic categories. We estimate pattern similarity for each object pair. (B) Multidimensional scaling visualizing PS in the LOC between all objects 
pre-encoding reduced to two dimensions across participants. Category affiliation has been color-coded. (C) Mixed effect model analyses controlling 
for random intercepts of participants found a significant main effect of semantic room category in the LOC and the lingual gyrus. In addition to the 
bar plots, visualizing averages, we provide estimated marginal means and confidence limits (white color), and boxplots showing the range of the 
underlying data. ***p < 0.001.
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13 of 22Human Brain Mapping, 2025

FIGURE 5    |    Visualization of analysis strategy and results obtained from analyses of mean similarity of incongruent objects to congruently en-
countered objects from the same semantic category post-encoding. (A) Post-encoding, we estimated mean pattern similarity of incongruent objects 
with congruently encountered objects of the same semantic category, and statistically compared resulting means between task-relevant and task-
irrelevant objects and correctly sorted vs. semantically sorted objects. (B) Room choice options relevant for analyses: A correct choice refers to an 
incongruent object being retrieved in the room, in which it was actually encountered (episodic room), and a semantic choice indicates the retrieval of 
the spatial position in the semantically related, but incorrect room. (C) Significant main effect of higher mean pattern similarity to congruent objects 
of the same semantic category among task-relevant objects compared to task-irrelevant objects in the LOC. (D) Significant main effect of higher mean 
pattern similarity to congruent objects of the same semantic category among correctly sorted compared to semantically sorted objects in the lingual 
gyrus. In addition to the bar plots, visualizing averages, we provide estimated marginal means and confidence limits (white color), and boxplots 
showing the range of the underlying data. *p < 0.05.
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14 of 22 Human Brain Mapping, 2025

objects. In both regions, we did not find a significant interaction 
between group affiliation and proximity (all p > 0.05). In aHC, 
pattern similarity change was not associated with the retrieved 
proximity of objects in SRT (all pHolm > 0.1). Results are depicted 
in Figure 6C.

Confidence of recall in SRT: During spatial recall of each ob-
ject, participants indicated their confidence with regard to 
the location where they remembered having encountered it. 

For each object pair, we averaged the confidence in SRT and 
analyzed whether a higher confidence (i.e., self-evaluation 
of memory accuracy) was associated with pattern similarity 
change in our ROIs. In the aHC, a lower average confidence 
significantly predicted a lower pattern similarity change 
(F(1, 8291.1) = 10.360, pHolm < 0.01, f2 = 0.001). That is, the neural 
similarity pattern between two objects was more distinct post-
encoding if the objects were spatially sorted with a low confi-
dence. There was no significant interaction of confidence and 

FIGURE 6    |    Visualization of results obtained from analyses of pattern similarity change. (A) Visualization of analysis strategy. Anal (B) 
Visualization of predictors: Retrieved distance between objects (green), actual distance between objects (orange) and calculation of distance error. 
(C) Retrieved distance between two objects predicting pattern similarity change in the pHC, the lingual gyrus and the LOC. We find a lower pattern 
similarity for higher retrieved distances in the LOC, and a similar trend effect in the pHC and the lingual gyrus. (D) Average confidence of spatial 
recall between objects as a subjective evaluation of memory accuracy, predicting pattern similarity change. We find a higher confidence to come 
along with higher pattern similarity change in the aHC, and, for the placebo group, in the LOC and the lingual gyrus. p < 0.1, *p < 0.05, **p < 0.01.
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15 of 22Human Brain Mapping, 2025

group affiliation (F(1, 8291.1) = 1.551, pHolm = 0.213, f2 < 0.001). 
Similarly, analyses in the LOC showed a comparable pattern: 
a lower confidence was associated with a smaller pattern 
similarity change (F(1, 8379.3) = 10.743, pHolm < 0.01, f2 = 0.001). 
Interestingly, analyses furthermore revealed a significant in-
teraction effect of group affiliation with average confidence in 
the LOC and the lingual gyrus (LOC: F(1, 8379.3) = 12.344, pHolm 
< 0.01, f2 < 0.001; lingual: F(1, 8389.1) = 25.144, pHolm < 0.001, 
f2 = 0.003): While the cortisol group showed no association 
between confidence and pattern similarity change, a higher 
confidence was associated with a higher pattern similarity 
change in the placebo group. Finally, there was no significant 
effect in analyses of the pHC (all pHolm > 0.1). Results are de-
picted in Figure 6D.

3.6   |   Reinstatement Effects for Incongruently 
Encountered Objects and Cortisol

Additionally, we analyzed how similar an object was represented 
to itself pre- compared to post-encoding, that is, pattern reorga-
nization. We were able to relate memory performance (i.e., (1) 
correct room sorting, (2) distance between retrieved location to 
correct position, referred to as drop error, see Figure 7B and (3) 
confidence of spatial recall) and object characteristics (congru-
ence; task relevance) to pattern reorganization (see Figure 7A). 
Group affiliation (cortisol vs. placebo) was included as a predic-
tor in the models. Only recognized objects were included. Thus, 
from originally 24 objects per participant, these analyses were 
based on M = 18.41 (SD = 3.07, min. = 10, max. = 24) objects 

FIGURE 7    |    Visualization of results obtained from analyses of an object's pattern reorganization. (A) Visualization of analysis strategy. (B) 
Depiction of congruence. Pattern similarity for congruently and incongruently encountered objects in lingual gyrus. Bars indicate the model fit 
parameter of LMM analyses. Error bars depict the standard error. In lingual gyrus, incongruent objects show a lower pattern reorganization than 
congruently encountered objects. (C) Model fit parameters of cortisol group predicting pattern reorganization across participants in the pHC. 
Participants receiving cortisol showed a higher similarity compared to participants receiving a placebo. In addition to the bar plots, visualizing av-
erages, we provide estimated marginal means and confidence limits (white color), and boxplots showing the range of the underlying data. *p < 0.05.
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16 of 22 Human Brain Mapping, 2025

from 51 participants. Summary tables for statistical results are 
included in Supporting Information S9.

Accuracy in SRT: There was no significant effect of correct 
room placement on pattern reorganization of an object in any 
ROI included in our analyses (aHC, pHC, LOC and lingual, all 
pHolm > 0.1). However, when looking at the distance between 
the retrieved location and the correct location (drop error), 
we found a trend toward a significant main effect in the aHC 
(F(1, 892.32) = 5.184, p < 0.05, pHolm = 0.081, f2 = 0.009), and the lin-
gual gyrus (F(1, 896.26) = 5.409, p < 0.05, pHolm = 0.081, f2 = 0.006), 
however not surviving corrections for multiple comparisons. See 
Supporting Information S10 for detailed results and elaboration.

Confidence of recall in SRT: We found no significant association 
between the confidence of the spatial recall of an object and the 
pattern reorganization (all pHolm > 0.1). In the model predict-
ing pattern reorganization in the pHC, further investigations 
revealed a moderate variance inflation factor (> 5) for cortisol 
group affiliation and the interaction between the two. This in-
dicates shared variance between the two predictors and thus 
limits the stability of this regression model. When including 
confidence as a single predictor for pattern reorganization in the 
pHC, there was still no significant effect (pHolm > 0.1).

Object characteristics: In our analyses, objects that were encoun-
tered incongruently showed a higher pattern reorganization 
than objects which were encountered congruently during the 
EVE task in the lingual gyrus (F(1, 888.78) = 9.079, pHolm < 0.05, 
f2 = 0.01, see Figure 7B), but not the aHC, the pHC, or the LOC 

(all pHolm > 0.1). There was neither an interaction effect between 
group and congruence (all pHolm > 0.1), nor a significant differ-
ence between task-relevant and task-irrelevant objects in any of 
our ROIs (all pHolm > 0.1).

Cortisol: Interestingly, across three models (drop error, congru-
ence, and task relevance), we observed a significant main effect 
of cortisol group affiliation on pattern similarity in the pHC, in-
dicating that participants in the cortisol group exhibited system-
atically higher pattern reorganization compared to the placebo 
group. The significant main effect of group affiliation persisted 
only in models where specific predictors (e.g., drop error but not 
correctness of room placement) were included. Thus, we ana-
lyzed cortisol group affiliation predicting pattern reorganization 
in the pHC without other predictors and found a significant ef-
fect (F(1, 51.345) = 7.434, p < 0.01, f2 = 0.14, see Figure 7C).

3.7   |   Searchlight Analyses Reveal Distributed 
Networks Involved in Episodic Memory 
and Semantic Bias

Pre-encoding, the whole-brain searchlight analysis confirms 
higher similarity for objects belonging to the same semantic 
category as compared to objects belonging to different semantic 
categories in the occipital cortex, specifically a cluster including 
the lateral occipital cortex, occipital fusiform gyrus, temporal 
occipital fusiform gyrus, lingual gyrus, posterior parahippo-
campal gyrus, and the occipital pole (t(50) = 11.8, pcorr < 0.01, 
FWE corrected using TFCE, see Figure 8A).

FIGURE 8    |    Depiction of significant clusters in searchlight analysis. (A) A visualization of significant clusters in which t-values across partici-
pants were significantly different from 0 when estimating whether there is a significant difference in activation patterns between objects belonging to 
the same room category as compared to different room categories in each searchlight sphere. (B) Clusters in which there was a significant difference 
in mean activation patterns between objects encountered congruently during encoding as compared to objects encountered incongruently, estimated 
with a paired t-test.
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17 of 22Human Brain Mapping, 2025

The within-subject t-test contrasting an object's pattern reor-
ganization showed higher similarity for incongruently encoun-
tered as compared to congruently encountered objects, both 
in occipital regions and medial temporal lobe, specifically an 
extended cluster including the temporal occipital part of infe-
rior temporal gyrus and middle temporal gyrus, intracalcarine 
cortex, posterior cingulate gyrus, precuneus cortex, cuneal cor-
tex, lingual gyrus, temporal fusiform cortex, temporal occipital 
fusiform cortex, occipital fusiform gyrus, and supracalcarine 
cortex (t(50) = 5.93, pcorr < 0.01, FWE corrected using TFCE, see 
Figure 8B). Furthermore, task-irrelevant objects showed a lower 
pattern reorganization compared to task-relevant objects in the 
occipital pole (t(50) = 5.65, pcorr < 0.05, FWE corrected using 
TFCE). Looking at the spatial recall accuracy (correct room ver-
sus incorrect room recall), we found a small cluster of a higher 
similarity for correctly placed objects as compared to incorrectly 
placed objects (t(50) = 4.04, pcorr < 0.05, FWE corrected using 
TFCE) in the intracalcarine cortex.

4   |   Discussion

What influences whether we remember an episode or rely on 
prior knowledge to reconstruct past experiences? What will be 
the neural underpinnings leading to a shift from real episodic 
memory traces to the recruitment of a priori semantic knowl-
edge? By creating conflict between an encoded episode and a 
priori semantic information, we wanted to investigate which 
memory system contributes to the retrieval of a past episode. 
Further, we aimed to shed light on how the neural representa-
tion of objects central (i.e., task-relevant) to the encoding task 
(i.e., the gist) changed as a consequence of the encoded episode. 
To this end, we designed a virtual apartment and had partic-
ipants conduct a series of actions with objects. Some of these 
objects were located in unexpected places. Furthermore, we ad-
ministered cortisol to half of our participants prior to retrieval 
to impair episodic memory retrieval (Wolf 2017). We expected to 
find higher error rates and consequently a higher contribution of 
the semantic memory system in the cortisol group.

On a behavioral level, we were able to replicate our previous 
findings: for task-irrelevant objects encountered in the virtual 
apartment, we found a semantic bias. Erroneously retrieved 
object locations tended to be retrieved according to the seman-
tically fitting location. Also, congruent objects were retrieved 
more accurately than incongruent objects in our long-term 
memory task. This is in contrast to findings from prediction 
error research, showing better memory for incongruent objects 
within scenes. However, there are multiple detrimental factors 
influencing whether there is a congruency or incongruency 
advantage, such as saliency, the interval between encoding 
and retrieval, or the number of incongruent objects (Allegretti 
et al. 2025; Frank et al. 2018; Greve et al. 2019). Despite a robust 
effect in previous studies showing that an increase in cortisol 
concentrations can impair retrieval (Kirschbaum et  al.  1996; 
Schilling et al. 2013; Tollenaar et al. 2009; Wolf 2017), we found 
that cortisol did not impair the accuracy of episodic memory. It 
has been argued that specifically hippocampus-based episodic 
retrieval (i.e., spatial recall) would be impaired as a consequence 
of cortisol increases, due to a high glucocorticoid and mineralo-
corticoid receptor density (Wolf 2017). One main hypothesis was 

that while cortisol impairs behavioral retrieval, the consolidated 
memory and respective neural pattern would be unaffected. 
This should be reflected in a higher semantic bias in the cortisol 
group. One explanation for our behavioral null findings could 
be the use of our encoding material: many studies administer-
ing cortisol use artificial behavioral paradigms for encoding 
(i.e., word lists or associations between two stimuli) (Antypa 
et  al.  2022; Schilling et  al.  2013; Schwabe and Wolf  2014). To 
our knowledge, there is no study investigating cortisol effects 
on spatial episodic memory after the encoding of a highly re-
alistic episode. The episode included not only items relevant to 
our analysis but also many further details, decorations, and a 
realistic context. The gist-retrieval of a complex, contextually 
embedded episode might function differently as compared to the 
retrieval of word lists (Shields et al. 2017). Thus, the retrieval of a 
complex scene might be less susceptible to cortisol effects. In our 
task, participants were confronted with a rich environment with 
plenty of cues to ease retrieval, especially in terms of cued recall. 
Accordingly, behavioral retrieval of task-relevant objects in cued 
recall was very good in both groups. A quantification of retrieval 
beyond item memory, also considering other aspects of the en-
coded episode, might have revealed differences between the cor-
tisol and the placebo group. To summarize, our results suggest 
a subtle and complex influence of cortisol on the reconstruction 
of a realistic past episode and the need for further investigations.

Next, we investigated the neural underpinnings of episodic 
versus semantically biased retrieval and how task relevance 
would influence this interplay between true and false memo-
ries. Specifically, for incongruent objects, we expected partici-
pants to employ prior knowledge in cases of uncertainty. Thus, 
we focused on the mean pattern similarity of an incongruent 
object to semantically related but congruently encountered ob-
jects (i.e., toothbrush in the kitchen vs. rubber duck, hairdryer 
in the bathroom) and statistically estimated whether there was a 
difference between (A) task-relevant and task-irrelevant objects 
and (B) correctly retrieved and semantically retrieved objects. 
Interestingly, we found that during retrieval, task-relevant ob-
jects were, on average, more similar to their semantically related 
objects than task-irrelevant objects in the LOC. In addition, cor-
rectly retrieved incongruent objects were likewise more similar 
to semantically related objects than objects that were retrieved 
to have been in the semantically associated room. Behaviorally, 
task-relevant objects were retrieved more correctly compared 
to task-irrelevant objects, which is in line with previous find-
ings on the role of enactment and attention in memory (Brooks 
et  al.  1999; Peterson and Mulligan  2010; Roberts et  al.  2022). 
Thus, attentional mechanisms during encoding defined to what 
extent a semantic bias is present during retrieval. On a neural 
level, objects that were correctly retrieved showed, in turn, a 
higher similarity to objects from their semantic category. This 
might represent a strengthening of the original category repre-
sentation of task-relevant and correctly retrieved objects in cases 
of attentive, incongruent encounters. Overall, we found superior 
long-term memory for congruent compared to incongruent ob-
jects. However, the previously presented findings highlight how 
incongruent encounters can lead to overt attention in some 
cases, possibly mediated by saliency (Allegretti et al. 2025).

Afterwards, we analyzed how neural pattern similarity changed 
following encoding and how this change in representations 
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would relate to retrieval performance. We found incongruently 
experienced objects to show a lower pattern reorganization (in 
form of pre- to post-encoding similarity) as compared to congru-
ently encountered objects in the lingual gyrus, a region typically 
associated with semantic knowledge (Devereux et al. 2013). This 
might represent an interaction between the episodic memory 
system and prior knowledge: the representation of an object after 
a surprising encounter in an unexpected location seems to be 
strengthened on a neural level, creating a distinct episodic repre-
sentation in cases of conflicting a priori information (Frank and 
Kafkas 2021; Ranganath and Rainer 2003). Thus, while a toaster 
would usually be placed in the kitchen, this specific toaster may 
be distinctly remembered to be placed in the bathroom, due to 
its strengthened memory representation.

When focusing on representational change between objects, we 
found unconfident object placements to be associated with a de-
crease in pattern similarity (post-encoding < pre-encoding simi-
larity) in the aHC. This might represent a distinctiveness of objects 
which were recognized from encoding but not associated with a 
spatial location. This distinctiveness suggests a contextually not 
embedded gist-memory of the episode, which was behaviorally re-
trieved with a higher involvement of semantic knowledge.

With regards to spatial associations between objects, we found a 
trend toward a similarity increase in the pHC for objects which 
have been retrieved as being spatially close to each other, irre-
spective of their temporal proximity (i.e., toaster and hairdryer 
on the kitchen table: using the toaster at the beginning of the se-
quence of action and using the hairdryer last). This strengthens 
the idea that the pHC is involved in the spatial associations be-
tween objects (Brunec et al. 2020). Importantly, our results show 
that the objects of the encoded episode (i.e., the gist of the tasks) 
were contextually bound together. The same pattern was found 
in the LOC and the lingual gyrus, which suggests a connection 
between hippocampal and neocortical areas involved in object 
and category representation. The involvement of the LOC and 
the lingual gyrus in contextual binding of semantically strongly 
categorized objects supports the idea that different brain re-
gions support memory accessibility and representation by pat-
tern similarity change in different dimensions. This has also 
been shown for emotionally relevant binding in the amygdala 
(Bierbrauer et al. 2021; Martin and Barense 2023). Furthermore, 
to adapt to the environment, categorical knowledge needs to be 
flexibly updated. It is unlikely that after one exposure to partly 
unexpected object combinations the representation of object 
pairs, formerly unrelated, would have changed fundamentally. 
However, our data might show the representation of categorical 
exceptions as a starting point of an updating of semantic knowl-
edge in consequence to an association between objects (Duff 
et  al.  2019). Interestingly, searchlight analyses did not reveal 
pattern similarity change or reinstatement in other neocortical 
brain regions, though a contribution of, for example, frontal re-
gions is likely (Renoult et al. 2019; Robin and Moscovitch 2017). 
Theories suggest that the retrieval of schema congruent informa-
tion is mediated by prefrontal structures as opposed to schema 
incongruent information (Audrain and McAndrews 2022; van 
Kesteren et al. 2012). However, the task demand, that is, the pas-
sive encoding of objects, as opposed to active retrieval, might 
have relied more on visual processing with less involvement of 
frontal regions.

Finally, we aimed to investigate the effects of cortisol on neu-
ral similarity and its link to memory performance. Despite not 
finding differences in behavioral analyses between the two 
groups, we found cortisol to cause effects on the neural level: 
First, looking at pattern reorganization of an object to itself, we 
found a lower reorganization in the cortisol group as compared 
to the placebo group in the pHC, independent of behavioral per-
formance. This might hint toward a difference in (re-)encoding 
in the cortisol group during this repeated exposure to relevant 
stimuli (Sherman et al. 2023); however, it did not result in dif-
ferences in behavior when looking at the retrieval accuracy of 
the originally encoded episode. Future studies might shed light 
on the effect of cortisol on pattern reorganization. Analyses fur-
thermore revealed group differences in the analyses of neural 
pattern similarity predicting behavioral retrieval. Analyzing 
representational change between objects, we found confidence 
in spatial recall to be associated with a higher pattern similarity 
change in the LOC and the lingual gyrus only for the placebo 
group but not for the cortisol group. First, this underlines the 
influence of cortisol on retrieval from extra-hippocampal pat-
terns despite a lower density of mineralocorticoid receptors (ter 
Heegde et al. 2015) and expands the small body of research on 
this topic (Wolf 2017). Second, this finding indicates the pres-
ence of a divergence between neural representations and behav-
ioral retrieval confidence as a consequence of cortisol intake. As 
argued before, increasing the number of stimuli or a quantifica-
tion of retrieval beyond item-memory in the present task would 
increase the sensitivity to detect possible differences in behavior 
between the two groups. Future studies are needed to elucidate 
the association between heightened cortisol levels and neural 
pattern similarity.

Our results are promising on multiple levels. However, it re-
mains challenging to obtain an optimal timing of tasks in study 
designs: First, by exposing participants to the PVT prior to en-
coding, all objects included in the episode were already seen 
multiple times in a random order. Although balanced across 
all objects, this prior exposure has likely influenced contextual 
encoding. Conversely, the second PVT might have in turn been 
influenced by the memory tasks timed before. Our results are 
still applicable to current models of neural representational pat-
terns, and previous studies have also used passive encoding of 
objects to investigate neural pattern similarity with respect to 
memory performance of a past episode (Bierbrauer et al. 2021; 
Deuker et al. 2016). However, one could argue that the specific 
analysis of pattern similarity during active instead of passive en-
coding has its advantages as well, considering the importance of 
task demand on representational patterns (Brunec et al. 2020; 
Renoult et al. 2019). Another point of consideration lies in the 
timing of cortisol application. As cortisol should influence re-
trieval accuracy, we administered cortisol in a way that partici-
pants had increased cortisol levels throughout the whole testing 
day, during which the retrieval tasks and the second PVT took 
place. While the impairing influence of acutely increased cor-
tisol concentration on memory retrieval has been elucidated, it 
has not been subject to intense investigation how it influences 
neural representational patterns (Bierbrauer et al. 2021). In fu-
ture studies one might consider conducting the post-encoding 
PVT when cortisol levels are equal between groups (i.e., prior to 
retrieval or after retrieval), to be able to clearly attribute associa-
tions between behavioral and neural responses to the influence 
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of cortisol on behavioral response patterns and avoiding the 
influence of cortisol on neural responses. Our observed effect 
sizes, while small, are comparable to those reported in previ-
ous studies examining representational similarities (Bellmund 
et al. 2022; Bierbrauer et al. 2021). Hence, our effects should be 
interpreted in the context of the sensitivity of RSA in detecting 
subtle, but meaningful, differences in neural representations. Of 
note, reasons for not replicating all results obtained from ROI 
analyses in our searchlight analyses might lie in (a) the neces-
sity for more extended corrections for multiple comparisons in 
whole-brain analyses, and (b) the difference in analysis strate-
gies: while we used LMMs for ROI analyses, we obtained t-maps 
(estimating differences in pattern similarity between dichoto-
mous predictors within each searchlight) or correlation maps 
(estimating correlations between continuous predictors for ob-
ject pairs and pattern similarity) covering the whole brain and 
then tested for significant clusters, or, in a second approach, con-
trasted searchlight maps for the two levels of our dichotomous 
predictors. Importantly, in our searchlight analysis, we did not 
statistically consider clustering in the data for individual partic-
ipants (i.e., by using a multilevel approach). One major caveat 
comes down to our sample being limited to only male partic-
ipants: the exclusion of female participants limits the general-
izability of our findings to male populations. While hormonal 
fluctuations that naturally occur in the female cycle and their 
interplay with cortisol potentially influence the semantic bias, 
our study design did not account for this variability. Since our 
study was aimed to be a first step into understanding the neural 
correlates of semantic bias during retrieval and the role of cor-
tisol in increasing this bias, we chose to focus on male partici-
pants to keep the already complex study design feasible. Future 
studies should investigate the role of cortisol and gender on se-
mantic biases using a more representative sample of both males 
and females. Additionally, future research could explore how 
menstrual cycles and hormonal use affect semantic processing 
specifically in females, which may provide insights into the neu-
ral basis of these biases that potentially occur naturally in the 
course of the menstrual cycle in women without direct cortisol 
intake.

5   |   Conclusion

Making use of a highly standardized yet realistic encoding envi-
ronment, we were able to demonstrate how increased semantic 
representation of incongruent objects leads to better memory. 
With the creation of a conflict between episodic and semantic 
information, we found strengthened memory traces for excep-
tional objects suggestive of reinstatement, which is furthermore 
reflected in an effect of cortisol on a neural level. Overall, our 
findings on incongruent objects suggest an influence of prior 
semantic knowledge on the construction of past episodes, re-
flected in neural similarity patterns.
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